• Title/Summary/Keyword: Low-density steels

Search Result 34, Processing Time 0.026 seconds

Effect of Coiling Temperature and Alloying Elements on the Mechanical Properties and Precipitation Behavior in High Strength Hot Rolled Steel Sheets (고강도 열연강판의 기계적 성질과 석출거동에 미치는 권취온도와 합금원소의 영향)

  • Kang, S.S.;Lee, O.Y.;Han, S.H.;Jin, K.G.;Seong, B.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.683-690
    • /
    • 2003
  • The high strength low alloy(HSLA) steels microalloyed with Nb, Ti and V have been widely used as the automobile parts to decrease weight of vehicles. The effects of process conditions are investigated in the aspects of the precipitation behavior and the mechanical properties of HSLA steel microalloyed with Nb and Ti using TEM, SANS and mechanical testing. When Ti was added to a 0.07C-1.7Mn steel which was coiled at $500^{\circ}C$, the specimen revealed the property of higher tensile strength of 853.1 MPa and the stretch-flangeability of 60%. The stretch-flangeability was increased up to 97.8% for coiling temperature above $700^{\circ}C$. The precipitation hardening cannot be achieved in the 0.045C-1.65Mn steel which was the lower density of fine precipitates. However, the 0.07C-1.7Mn steels containing Nb and/or Ti which was coiled at X$/^{\circ}C$ have a high precipitates density of $2${\times}$10^{ 5}$/$\mu$㎥. The high strength of these steels was attributed to the precipitation hardening caused by a large volume froction of (Ti, Nb)C precipitates with a size below 5 nm in ferrite matrix.

A Brief Review of κ-Carbide in Fe-Mn-Al-C Model Alloys

  • Seol, Jae Bok
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.117-121
    • /
    • 2018
  • The multiple length scale analysis of previously designed Fe-Mn-Al-C based low-density model alloys reveals the difference in ordered ${\kappa}-carbide$, $(Fe,Mn)_3AlC_x$, between Fe-25Mn-16Al-5.2C (at%) alloy and Fe-3Mn-10Al-1.2C (at%) alloy. For the former alloy composition consisting of fully austenite grains, ${\kappa}-carbide$ showed majorly cuboidal and minorly pancake morphology and its chemical composition was not changed through aging for 24 h and 168 h at $600^{\circ}C$. Meanwhile, for the isothermally annealed ferritic alloy system for 1 hr at 500 and $600^{\circ}C$, the dramatic change in the chemical composition of needle-shape ${\kappa}-carbide$, $(Fe,Mn)_3(Fe,Al)C_x$, was found. Here we address that the compositional fluctuations in the vicinity of the carbides are significantly controlled by abutting phase, either austenite or ferrite. Namely, the cooperative ordering of carbon and Al is an important factor contributing to carbide formation in the high-Mn and high-Al alloyed austenitic steel, while the carbon and Mn for the low-Mn and high Al alloyed ferritic steel.

Oxygen Removal during Sintering of Steels Prepared from Cr-Mo and Mo Prealloyed Powders

  • Danninger, Herbert;Xu, Chen;Lindqvist, Bjorn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.814-815
    • /
    • 2006
  • The removal of oxygen during sintering by carbothermic reduction was studied for steel compacts Fe-Cr-Mo-C and Fe-Mo-C prepared from prealloyed powders. The compacts were prepared by pressing at 600 and 1000 MPa and sintering at 1100 and $1300^{\circ}C$ in vacuum. It showed that for the Cr-Mo steel, deoxidation strongly depends on the sintering temperature, in contrast to the plain Mo steel; at $1300^{\circ}C$ very low oxygen levels were measured with the standard density compact while at high density still significant oxygen is contained. This indicates inhibition of final deoxidation by pore closure, but apparently without adverse effect on the mechanical properties.

  • PDF

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

Microstructural engineering of dual phase steel to aid in bake hardening

  • Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Low carbon steel of composition 0.05C - 0.18 Mn - 0.012 Si is intercritically annealed at temperatures $750^{\circ}C$, $775^{\circ}C$ and $800^{\circ}C$. The equilibrated alloys of different amounts of austenite with varying carbon contents are quenched in iced water. The same alloys are subcritically annealed at $675^{\circ}C$ and $700^{\circ}C$ for varying periods of times; the subcritically annealed alloy samples are quenched in iced water. Optical, scanning electron and transmission electron microscopy are carried out for all the samples. The dislocation structure, its distribution and density present in the above prepared duplex ferrite martensite steels are studied. The martensites are found to be highly dislocated due to lattice invariant deformation. At the same time ferrite adjoining the martensite areas also exhibits quite a high dislocation density. The high dislocation density is favorable for strain ageing and hence bakes hardenability. EDS analyses were carried out for both martensite and ferrite phases; it is found that the degree of supersaturation in ferrite together with carbon content in martensite varies with the process parameters. The microhardness test results show that the hardness values of different phases differ appreciably with process parameters. The microstructures and the corresponding microanalyses reveal that differently processed steels contain phases of varying compositions and different distribution.

Variables of Electrolytic Nickel Plating for RPV Cladding Repair (압력용기 클래드 보수용 전해니켈도금 인자 관계 연구)

  • Kim, Min-Su;Hwang, Seong-Sik;Kim, Dong-Jin;Lee, Dong-Bok
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.148-153
    • /
    • 2019
  • Pure nickel with a thickness of 1 mm was plated on type 304 stainless steels and low alloy steels (JIS G3131 SPHC) by electrolytic plating method in a circulating plating bath. Plating performance, mechanical properties, and surface characteristics were evaluated in terms of pretreatment process, anode material, pH, current density, and flow rate of the plating solution. Addition of hydrochloric acid during pre-treatment process improved the adhesion performance of plating. To improve plating efficiency, it is desirable to use S-nickel rather than electrolytic nickel. The use of S-nickel was also confirmed to be desirable for maintaining the pH and concentration of the plated solution. The defect of the plating using S-nickel anode produced pit on the surface. However, it is believed that proper control can be obtained by increasing the flow rate. Internal stress and hardness values of electrolytic nickel plating according to current density need to be carried out with further studies.

Electrolytic Boronizing on Carbon Steels in Fused Slat of Borax and Sodium Chloride Mixture (붕사와 염화나트륨 혼합용융욕에서 탄현강의 전해붕화처리)

  • 이두환;김정기;김한삼;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • The electrolytic boronizing on carbon steels in the mixture of $Na_2B_4O_7$ and NaCl was conducted at 750~$950^{\circ}C$ for 1~6 hours under 0.5A/$\textrm{cm}^2$ current density. The micorostructrure and microheredness of boronized layer was also studien. The effect of the additive such as $CaCl_2$ or NaOH on the formation of boronized layer was also investigated. The boronized layer were composed of two sublayers, i.e., FeB and $Fe_2B$ , which have tooth structure. the average layer thinknesses of the low carbon steel and SM45C boronized at $900^{\circ}C$ for 4hours were 153 and 138 $\mu\textrm{m}$, respectively. The thickness of the twosublayers was significantly increased with increasing boronizing temperature. To obtain a single $Fe_2B$ layer without FeB sublayer, the boronized materials ware homegenized at $950^{\circ}C$ for 4 hours. It was fount that the single layer with a microhardness Hv$\thickapprox$ 1120 -1250 was formed. The calculated activation energies for formation of boronized layer on the low carbon steel and SM45C were 18.7 and 12.6 Kcal/mol, respectively.

  • PDF

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

Radiation induced grain boundary segregation in ferritic/martensitic steels

  • Xia, L.D.;Ji, Y.Z.;Liu, W.B.;Chen, H.;Yang, Z.G.;Zhang, C.;Chen, L.Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2020
  • The radiation induced segregation of Cr at grain boundaries (GBs) in Ferritic/Martensitic steels was modeled assuming vacancy and interstitialcy diffusion mechanisms. In particular, the dependence of segregation on temperature and grain boundary misorientation angle was analyzed. It is found that Cr enriches at grain boundaries at low temperatures primarily through the interstitialcy mechanism while depletes at high temperatures predominantly through the vacancy mechanism. There is a crossover from Cr enrichment to depletion at an intermediate temperature where the Cr:Fe vacancy and interstitialcy diffusion coefficient ratios intersect. The bell-shape Cr enrichment response is attributed to the decreasing void sinks inside the grains as temperature rises. It is also shown that low angle grain boundaries (LAGBs) and special Σ coincidence-site lattice (CSL) grain boundaries exhibit suppressed radiation induced segregation (RIS) response while high angle grain boundaries (HAGBs) have high RIS segregation. This different behavior is attributed to the variations in dislocation density at different grain boundaries.

A study of Frictional Behavior of SCM415 Steel as a Function of Density of Micro Dimples (미세 딤플의 밀도에 따른 SCM415강의 마찰 거동 연구)

  • Cho, Min-Haeng;Lee, Seung-Hyuk;Park, Sang-Il;Lyo, In-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.311-316
    • /
    • 2010
  • Surface texturing of micro dimple or pore-shaped pattern was prepared using a fiber laser system. Surface texturing was designed to have a square pattern with a particular pitch distance for each corresponding density of 5, 10, 20, and 30%. Thermal damages such as bulges and burrs formed during laser irradiation were observed around the dimples. Thermal damages were later removed by lapping using alumina particles of $0.3{\mu}m$ in diameter. Oscillating friction tests were performed against heat-treated high speed steels under lubricated condition. The lubricant used was SAE 5W-30 automotive engine oil. Normal contact pressure and oscillating frequency was 0.28 MPa and 20 Hz, respectively. The tests were continued for 20 minutes, and friction plots were recorded for examination. Results revealed that the coefficient of friction was lowered regardless of texturing density. Moreover, the lowest coefficient of friction was obtained for 10% density texturing. It is attributed to increased lubricity due to the introduction of surface texturing. In addition, it is concluded that the optimum texturing density and pattern must be found for the best lubricity and low friction.