• Title/Summary/Keyword: Low-crystal field

Search Result 176, Processing Time 0.028 seconds

Periodically domain inversion and optical properties of low-loss Ti : $LiNbO_3$ waveguides (저손실 Ti : $LiNbO_3$ 광도파로의 주기적 분극 반전과 광학특성)

  • Yang, W.S.;Kwon, S.W.;Lee, H.M.;Kim, W.K.;Yoon, D.H.;Lee, H.Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.49-52
    • /
    • 2006
  • Periodic electric field assisted poling low loss (${\sim}0.1dB/cm$) single-mode Ti-diffused waveguides in $LiNbO_3$ has been achieved using a periodically patterned electrode on the +Z surface of Ti : $LiNbO_3$ crystal and homogeneous LiCl solution. Using selective chemical etching, we confirmed the periodic (${\sim}16{\mu}m$) domain inverted structure and measured SH (second harmonic) properties of fabricated periodically poled Ti : $LiNbO_3$ waveguides.

Effect of Spin Coating Speed on Characteristics of Polyimide Alignment Layer for Liquid Crystal Display (스핀 코팅 공정에 따른 액정디스플레이용 폴리이미드 배향막 특성 분석)

  • Kim, Jin-Ah;Choi, Se-Hoon;Park, Hong-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • The field of liquid crystal display (LCD) is constantly in the spotlight and the process of depositing an alignment layer in the LCD manufacturing process is very important to obtain excellent performance such as low-power driving and high-speed response to improve LCD performance. Therefore, research on liquid crystal (LC) alignment is being actively conducted. When manufacturing LCD, it is necessary to consider the effect of the alignment layer thickness as one of the factors affecting various LCD performances. In addition, previous studies confirmed the LC alignment characteristics correlate with the rotation speed in the spin coating process. Therefore, the electro-optical properties of the LCD were investigated by manufacturing a polyimide alignment layer by varying the rotation speed in the spin coating process in this study. It was confirmed that the thickness of the polyimide alignment layer was controlled according to the spin coating conditions. The average transmittances of anti-parallel LC cells at the spin coating speed of 2,500 rpm and 3,000 rpm are about 60%, which indicates that the LC cell has relatively higher performance. At the spin coating speed of 3,000 rpm, the voltage-transmittance curve of twisted nematic (TN) LC cell was below 1.5 V, which means that the TN LC cell operated at a low power. In addition, high-speed operating characteristics were confirmed with a response time of less than 30 ms. From these derived data, we confirmed that the ideal spin coating speed is 3,000 rpm. And these results provide an optimized polyimide alignment layer process when considering enhanced future LCD manufacturing.

Effects of Convective Flow Fields on the Physical Vapor Transport Processes of $Hg_2Cl_2$ Crystals (염화제일수은 승화법 단결정 성장 공정에서의 대류 현상 연구)

  • Park, Jang-Woo;Kim, Geug-Tae;M.E. Glicksman
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.39-43
    • /
    • 1997
  • Mercurous chloride (Hg$_2$Cl$_2$) has many advantages in its applications to acousto-optic, and opto-electronic devices because it has the unique properties of a broad transmisson range, well into the far infra-red, a low acoustic velocity, a large birefringence, and a high acousto-optic figure of merit[1]. Hg$_2$Cl$_2$ has a high vapor pressure, hence single crystals are usually grown by physical vapor transport(PVT) method in closed silica glass ampoules. We discuss the application of the laser Doppler velocimetry to measure the flow field inside a closed ampoule. The experimental results, are discussed its relationship to computational model and compared to their expectations.

  • PDF

Electrical Properties Low-Density Polyethylene by use of Metallocene Catalyst (메타로센 촉매를 이용한 저밀도 폴리에틸렌의 전기적 특성)

  • ;Tatsuo Mori;Teruyoshi Mizutani
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.123-127
    • /
    • 2000
  • In order to investigate the influence of manufacturing process on the electrical properties, we used two kinds of low density polyethylene prepared using metallocene catalyst (mL), linear low density polyethylene prepared using Ziegler catalyst (LL) and low density polyethylene by high pressure process (LD). mL has the narrowest composition and molecular weight distributions. We measured the dc and impulse breakdown strengths and current densities at 3$0^{\circ}C$, 6$0^{\circ}C$ and 9$0^{\circ}C$. mL had a higher breakdown strength and a lower high-field current than LD and LL. These results were discussed from the point of manufacturing processes.

  • PDF

Experimental study of natural convection for magnetic fluids in annular pipes (이중원관내 자성유체의 자연대류에 관한 실험적 연구)

  • Park, Joung-Woo;Lee, Jun-Hee;Seo, Lee-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.191-195
    • /
    • 2001
  • The applications of magnetic fluid can be normally made by 1) using changes of a property of matter caused by applied magnetic field; 2) preserving magnetic fluid at a certain position or in a magnetic fluid keeping the body in a floating condition; 3) controlling the flow of magnetic fluid by means of magnetic field. However, these are usually made by using their methods together. In this study, the natural convection flow of a magnetic fluid in annular pipes is experimentally analyzed. High temperature is kept constantly inside of a circular pipe of experimental model, on the other hand, low temperature is kept constantly outside of it. In experiments, several cases are carried out in order to clarify the fluence of direction and intensity of magnetic fields on the natural convection of magnetic fluid. Therefore magnetic fields are applied in various intensity and up and down directions by permanent magnets.

  • PDF

Liquid Crystal Device associated with Fringe-Field Driven Optically Compensated Splay

  • Jung, B.S.;Kim, S.J.;Oh, S.M.;Lee, S.H.;Kim, H.Y.;Kim, S.Y.;Lim, Y.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1197-1199
    • /
    • 2004
  • We have studied an optically compensated splay (OCS) mode driven by fringe electric field. The OCS configuration obtained by applying voltage to vertically aligned LCs shows a dark state when an optic axis of the OCS cell coincides with one of crossed polarizer axis. When the fringe electric field is applied, the LC director rotates in plane above whole electrode surface, giving rise to the high transmittance, the low operating voltage and wide viewing angle simultaneously.

  • PDF

Thermal Stability Enhancement of Nickel Monosilicides by Addition of Iridium (이리듐 첨가에 의한 니켈모노실리사이드의 고온 안정화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.571-577
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-Ni/(poly)Si and 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the thermal stability of nickel monosilicide at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides for salicide process was formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester is used for sheet resistance. Scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An x-ray diffractometer and an auger depth profile scope were used for phase and composition analysis, respectively. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1200^{\circ}C$ and $800^{\circ}C$, respectively, while the conventional nickel monosilicide showed low resistance below $700^{\circ}C$. The grain boundary diffusion and agglomeration of silicides led to lower the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

A Cold model experiment on the thermal convection in the czochralski silicon single crystal growth process (저융점 금속을 사용한 초크랄스키 실리콘 단결정 성장 공정의 열유동 모사 실험)

  • 이상호;김민철;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • An experimental simulation on the flow in Czochralski melt using a cold model was carried out to obtain the velocities of fluid flow which affects the oxygen concentration of Czochralski crystal growing system. Low melting point Woods metal with similar Pr number to the silicon melt was adopted as a working fluid. Local flow velocities at numerous positions in the melt were simulataneously measured in three dimension using incorporated magnet probe. The measured velocity field showed a non-axisymmetric pattern dominated by natural convection. The analysis on the correlation between data set of temperatures simultaneously measured at two melt positions showed that the values of correlation coefficients were smaller than those of previous study on the small size of silicon melt and these phenomena are believed to occur because turbulent behavior becomes stronger in large size of the melt.

  • PDF

A computer simulation of transport phenomena in a roller kiln (로울러 킬른 내의 이동현상에 관한 전산모사)

  • 이성철;김병수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.251-259
    • /
    • 1999
  • A computer simulation was conducted for heat and momentum transfer in a roller kiln. Time-averaged Navier-Stokes equation conjugated with energy balance equation was numerically solved to predict the temperature distribution and fluid flow field in the roller kiln. A computer simulation was performed for a roller kiln for three cases. Firstly, when there are no ceramic materials in the roller kiln, the effect of natural convection was studied on the temperature distribution and fluid flow field. From the result, it was observed that air takes the heat of wall away from the roller kiln by natural convection and the heat was not transferred effectively. Secondly, with ceramic materials temperature difference of ceramic material from the borrom to the top of a ceramic material was about 255K in 5th zone and this is because the heat is transferred from the surface of a ceramic material to flowing air with relatively low temperature. Finally, we considered effect of radiation heat transfer. Temperature difference of ceramic material in 5th zone was about 300 K, due to radiation heat transfer on the ceramic material surfaces.

  • PDF