• Title/Summary/Keyword: Low-carbon fishing gear

Search Result 7, Processing Time 0.022 seconds

Economic analysis of development of low-carbon trawl gear (탄소저감형 트롤어구 개발의 경제성 분석)

  • Park, Seong-Wook;Lee, Kyoung-Hoon;Kang, Min-Ju;Park, Seong-Kwae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.360-369
    • /
    • 2012
  • The main purpose of this study is to analyse economic feasibility of low-carbon-oriented trawl gear. The results of benefit/cost analysis showed that use of the low-carbon fishing gear is economically feasible. Considering the fuel saving and relatively low $CO_2$ emission by reducing the resistance of gear, net present value by such gear improvement was estimated about 2,430~2,853 million won with the benefit-cost ratio 1.65~1.84 and the internal rate of return 29.18~30.48 percent. Development of low-carbon trawl gear would render significant contributions to reducing $CO_2$ emission in fishing operations and lead to reduce fishing costs due to fuel savings.

Economic analysis on development of low-carbon gear for anchovy boat seine (탄소저감형 권현망어구 개발의 경제성 분석)

  • Park, Seong-Wook;Lee, Kyounghoon;Kang, Min-Joo;Park, Seong-Kwae;Lee, Chun-Woo;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.291-300
    • /
    • 2013
  • The main purpose of this study is to analyse economic feasibility of low-carbon-oriented gear for anchovy boat seine. The results of benefit/cost analysis showed that use of the low-carbon fishing gear is economically feasible. Considering the fuel saving and relatively low $CO_2$ emission by reducing the resistance of gear, net present value by such type 1 gear improvement was estimated about -2,490 ~ -1,580 million won with the benefit-cost ratio 0.81~ 0.88. And net present value by such type 2 gear improvement was estimated about 6,540 ~ 7,780 million won with the benefit-cost ratio 1.79 ~ 1.94. Development of lowcarbon trawl gear would render significant contributions to reducing $CO_2$ emission in fishing operations and lead to reduce fishing costs due to fuel savings.

Low-Carbon trawl design with analysis of a gear drags and calculation of construction costs using numerical methods (수치해석기법에 의한 어구 저항 분석 및 저탄소 트롤어구 설계와 비용 분석)

  • Lee, Ji-Hoon;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.313-323
    • /
    • 2010
  • Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear during fishing operation is generally related to hydrodynamic resistance on the gear. This research demonstrates a new approach using numerical methods to reduce fuel consumption. By designing the fishing gear using drawing software, the whole and partial resistance force on the gear can be calculated as a result of simulations. The simulation results will suggest suitable materials or gear structure for reducing the hydrodynamic forces on the gear while maintaining the performance of the gear. This research will helpful to reduce the $CO_2$ emissions from fishing operations and lead to reduce fishing costs due to fuel savings.

Applying Fishing-gear Simulation Software to Better Estimate Fished Space as Fishing Effort

  • Lee, Ji-Hoon;Lee, Chun-Woo;Choe, Moo-Youl;Lee, Gun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.138-147
    • /
    • 2011
  • Modeling fishing-gear systems is essential to better understand the factors affecting their movement and for devising strategies to control movement. In this study, we present a generalized mathematical modeling methodology to analyze fishing gear and its various components. Fishing gear can be divided into a finite number of elements that are connected with flexible lines. We use an algorithm to develop a numerical method that calculates precisely the shape and movement of the gear. Fishinggear mathematical models have been used to develop software tools that can design and simulate dynamic movement of novel fishing-gear systems. The tool allowed us to predict the shape and motion of the gear based on changes in operation and gear design parameters. Furthermore, the tool accurately calculated the swept volume of towed gear and the surrounding volume of purse-seine gear. We analyzed the fished volume for trawl and purse-seine gear and proposed a new definition of fishing effort, incorporating the concept of fished space. This method may be useful for quantitative fishery research, which requires a good understanding of the selectivity and efficiency of fishing gear used in surveys.

A study on the change of the depth and catch of hairtail trolling lines (갈치 끌낚시 어구의 수심변화 및 어획량 시험)

  • KIM, Mun-Kwan;PARK, Su-Hyeon;KANG, Hyeong-Cheol;PARK, Yong-Seok;AN, Young-Il;LEE, Chun-Woo;PARK, Su-Bong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.107-115
    • /
    • 2018
  • In this study, we tested Japanese trolling lines in the Jeju fishery. This fishery simulates the natural marine environment with many seabed rocks, and has been redesigned and manufactured it to be suitable for the Jeju fishery. In order to ensure that the trolling lines were deployed at the inhabitation depth of hairtails, the conditions required for the fishing gear to reach the target depth were determined for use during the experiment. The experimental test fishing was conducted at the depth of 120 m water in front of Jeju Seongsanpo and in the offshore area of Jeju Hanlim. The fishing gear used in the test fishing is currently used in a variety of field operations in Japan. However, several problems were identified, such as twisting of the line during its deployment and excessive sinking of the main line. The fishing gear was, therefore, redesigned and manufactured to be more suitable for the Jeju fishery environment. For the fishing gear to accurately reach the target depth, depth loggers were installed at the starting point of the main line and at the 250 m and 340 m points of the line. Depth and time were recorded every 10 seconds. According to the daytime positioning of hairtails in the lower water column, the target depth of the fishing gear was set at 100-110 m, which was 10-20 m above the sea floor. At a speed of 1.9 knots and with a 9 kg sinker attached, the main fishing line was deployed and catch yields at depths of 100 m, 150 m and 180 m were recorded and analyzed. When the 180 m main line was fully deployed, the time for the hairtail trolling lines to arrive at the appropriate configuration had to be 5 minutes. At this time, the depth of the fishing gear was 16-23 m above the sea floor, in accordance with the depths at which the hairtails were during the day. In addition, in order to accurately place the fishing gear at the inhabitation water depth of hairtails, the experimental test fishing utilized the results of the depth testing that identified the conditions required for the fishing gear to reach the target depth, and the result was a catch of up to 97 kg a day.

A study on the status of octopus pot fishery in the coastal seas of Gyeongbuk, Korea (우리나라 경북 연안해역 문어통발 어업실태에 관한 연구)

  • YANG, Jae-Hyeong;LEE, Soo-Jeong;KIM, Pyungkwan;JUNG, Jung-mo;KIM, Seonghun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.95-105
    • /
    • 2022
  • In this study, the fishery status of the octopus pot fishery in the east coastal sea were investigated, and the fishing performance of each pot shape was compared and analyzed. The fishery status survey was conducted through listening surveys at Jukbyeon Port, Uljin Port and Pohang Daebo Port in Gyeongbuk Province, and the amount of fishing gear used, fishing method, size and loss of octopus pot fishery was investigated. On the east coastal sea, octopus is one of the commercially important fish stocks and is caught in inshore pots, inshore combos, inshore gillnets and offshore pots. Among these fishing methods, pot fishing yields the highest catch. The shape of the pot differs depending on the region. In Uljin (Jukbyeon Port and Hupo Port), Gyeongbuk, rectangular type net pots are mainly used, and in Pohang (Daebo Port) in Gyeongbuk, drum-type pots are mostly used. Enteroctopus dofleini accounts for more than 90% of the catch of octopus. For the octopus fishing performance test by trap type, three types of traps (rectangular pot, drum pot and cylinder pot) were used on the coastal sea of Pohang Daebo. As a result, the total catch by pot shape was shown in the order of rectangular-type pot > drum-type pot > cylinder-type pot. The catch of octopus, the target species, was in the following order: rectangular-type pot > drum-type pot > cylinder-type pot. Such result shows a significant difference (Mann-Whitney test, p<0.05).

Sinking depth of tuna longlines related to mainline materials in the North Pacific Ocean (북태평양 중부공해에서 조업하는 다랑어연승어구의 모릿줄 재질에 따른 침강수심)

  • Jo, Hyun-Su;Hwang, Seon-Jae;Lee, Ji-Hoon;An, Doo-Hae;Moon, Dae-Yeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.173-182
    • /
    • 2011
  • The purpose of this paper is to provide useful information for fishermen in the manner of investigation a sinking speed of current type tuna longline gear at the North Pacific Ocean as a new developed tuna longline fishing ground. The sinking depth of mainline in connection with different basket was investigated. The experiments were also performed with different materials such as Supermansen (i.e., PE) and Hitech (i.e., PA) for the mainline to investigate the sinking depth of mainline and hooks. Furthermore, the relation between the sinking depth of hooks and catches are investigated also. The sinking depth of mainline at the first and the last shooting basket shows deeper than that of middle part of a basket due to reduced shortening ratio. The sinking depth of mainline and hook with Hitech material shows more shallow than that of Supermanse material, even the Hitech case was designed to sink deeper than that of Supermanse case. The highest catches arise at the middle part basket as the hook number 7 with around 248m sinking depth. From the results, longline with Hitech material is needed to increase the sinking force for reaching the relevant sinking depth. Moreover, the current strength at the North Pacific Ocean will be considered for further commercial fishing.