• Title/Summary/Keyword: Low-altitude

Search Result 641, Processing Time 0.024 seconds

Design and Performance Analysis of Propeller for Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3의 프로펠러 설계 및 성능해석)

  • Park, Donghun;Hwang, Seungjae;Kim, Sanggon;Kim, Cheolwan;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.759-768
    • /
    • 2016
  • Design and performance analysis of propeller for solar-powered HALE UAV, EAV-3 are conducted. Experiment points of design variables are obtained by using Design of Experiment(DOE) and Kriging meta-model is generated for objective and constraints function. The geometry of propeller is designed by evaluating the response surface with requirement and restrictions. The validity of the design is verified by meta-model based optimization. Computational analyses are carried out by using commercial CFD code and the results are compared with those from a design code and wind tunnel test. The results showed good agreement with predictions of the design code at the design altitude. Also, it is confirmed that the blockage effect due to the measurement device and support strut is included in the test data and the results including this effect compare well with the test data.

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

A Study on Clutter Cancellation in a Weather Radar System Using a Phased Array Antenna (위상배열 안테나를 활용한 기상 레이다 시스템에서의 클러터 제거에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1173-1179
    • /
    • 2008
  • Since there are very strong clutter returns in airborne and ground weather radars used for the detection of low altitude weather hazards, the reliable weather data cannot be extracted from the weak Doppler weather signal without cancellation of these strong clutter returns. However, the clutter cancellation in Doppler frequency domain is not an easy task since even the fixed clutter returns not to mention the moving clutter can have Doppler shifts due to the antenna rotation and operational environment. Therefore, it was shown in this paper a simple array antenna system can be used for the efficient clutter cancellation in the spatial domain. The weather signal, various moving and fixed clutters were modelled and simulated to prove the performance of this adaptive array system. Also, the degree of accuracy in pulse-pair estimates of a weather radar was compared and analyzed from the simulated weather data.

Application of Spaceborne Earth Remote Sensing Information (인공위성 원격탐사 정보의 활용)

  • 가민호
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.261-279
    • /
    • 2000
  • Today, the development of spaceborne Earth remote sensing is characterised by the increasing number and various types of remote sensing satellites, which are being operated in the low altitude and geostationary orbits with the help of rapid development of modern space technologies. It is believed that around 15 countries have programs to own their spaceborne Earth remote sensing systems, and the number of systems will be reached to some tens until the end of 2000 years. It is expected that Korean remote sensing satellites will be launched in sequence according to the national space program. The befinits will be magnificient because of the wide range of application area. Application of remote sensing information to the social infra implies that the potential customers can access the information, mission and the characteristics of the operation, and it is necessary to be supplied more information about systems and mission areas to our domestic users for proper applications. In this review we will survey the applications of the information acquired by the systems of USA, Russia and other countries. In this review we will discussed withing general application area, missions and systems.

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Young-Kyun;Chai, Jong-Seo;Kim, Yu-Seong;Lee, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor (SEM). 35 MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

Estimation of Forest Productive Area of Quercus acutissima and Quercus mongolica Using Site Environmental Variables (산림 입지토양 환경요인에 의한 상수리나무와 신갈나무의 적지추정)

  • Lee, Seung-Woo;Won, Hyung-Kyu;Shin, Man-Yong;Son, Young-Mo;Lee, Yoon-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.429-434
    • /
    • 2007
  • This study was conducted to estimate site productivity of Quercus acutissima and Quercus mongolica by four forest climatic zones. We used site environmental variables (28 geographical and pedological factors) and site index as a site productivity indicator from nation-wide 23,315 stands. Based on multiple regression analysis between site index and major environmental variables, the best-fit multivaliate models were made by each species and forest climatic zone. Most of site index prediction models by species were regressed with seven to eight factors, including altitude, relief, soil depth, and soil moisture etc. For those models, three evaluation statistics such as mean difference, standard deviation of difference, and standard error of difference were applied to the test data set for the validation of the results. According to the evaluation statistics, it was found that the models by climatic zones and species fitted well to the test data set with relatively low bias and variation. Also having above middle of site index range, total area of productive sites for the two Quercus spp. estimated by those models would be about 6% of total forest area. Northern temperate forest zone and central temperate forest zone had more productive area than southern temperate forest zone and warm temperate forest zone. As a result, it was concluded that the regressive prediction with site environmental variables by climatic zones and species had enough estimation capability of forest site productivity.

Development of Brightness Correction Method for Mosaicking UAV Images (무인기 영상 병합을 위한 밝기값 보정 방법 개발)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1071-1081
    • /
    • 2021
  • Remote Sensing using unmanned aerial vehicles(UAV) can acquire images with higher time resolution and spatial resolution than aerial and satellite remote sensing. However, UAV images are photographed at low altitude and the area covered by one image isrelatively narrow. Therefore multiple images must be processed to monitor large area. Since UAV images are photographed under different exposure conditions, there is difference in brightness values between adjacent images. When images are mosaicked, unnatural seamlines are generated because of the brightness difference. Therefore, in order to generate seamless mosaic image, a radiometric processing for correcting difference in brightness value between images is essential. This paper proposes a relative radiometric calibration and image blending technique. In order to analyze performance of the proposed method, mosaic images of UAV images in agricultural and mountainous areas were generated. As a result, mosaic images with mean brightness difference of 5 and root mean square difference of 7 were avchieved.

Decision-Making System of UAV for ISR Mission Level Autonomy (감시정찰 임무 자율화를 위한 무인기의 의사결정 시스템)

  • Uhm, Taewon;Lee, Jang-Woo;Kim, Gyeong-Tae;Yang, Seung-Gu;Kim, Joo-Young;Kim, Jae-Kyung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.829-839
    • /
    • 2021
  • Autonomous system for UAVs has a capability to decide an appropriate current action to achieve the goal based on the ultimate mission goal, context of mission, and the current state of the UAV. We propose a decision-making system that has an ability to operate ISR mission autonomously under the realistic limitation such as low altitude operation with high risk of terrain collision, a set of way points without change of visit sequence not allowed, and position uncertainties of the objects for the mission. The proposed decision-making system is loaded to a Hardware-In-the-loop Simulation environment, then tested and verified using three representative scenarios with a realistic mission environment. The flight trajectories of the UAV and selected actions via the proposed decision-making system are presented as the simulation results with discussion.

Report on an Outbreak of the Onion Thrips, Thrips tabaci, Infesting Welsh Onion during Winter Season (동절기 대파 재배지 파총채벌레 발생 보고)

  • Kim, Chulyoung;Choi, Dooyeol;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.247-254
    • /
    • 2021
  • An outbreak of the onion thrips, Thrips tabaci, was observed in welsh onion cultured in greenhouse during winter season (Jan ~ Feb). The thrips was identified using DNA barcode. Weekly occurrence was around 240 ~ 700 adults per trap. Trap color gave significant influence on the capture efficiency with a preference on yellow compared to blue sticky trap. Subsequently, most (> 90%) onions exhibited a damage symptom induced by the thrips. This outbreak was observed only in a specific area but not in nearby greenhouses. This discontinuous occurrence pattern was further investigated by analyzing flight behavior through in- and out- door tests. About 1.5 mm-body length adults could jump up to about 5 cm and fly up to 2 m in altitude, which was the top of the greenhouse. This suggested their migrating potential to nearby (< 2 m) greenhouses. However, few were detected in the neighboring places probably due to physical hindrance with low temperatures between greenhouses. This is reasoned why the onion thrips forms a patch distribution among greenhouses during winter season.