• Title/Summary/Keyword: Low-altitude

Search Result 646, Processing Time 0.028 seconds

Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia (인공위성 자력계에서 관측된 동아시아 암권의 지자기이상)

  • Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 2002
  • Improved procedures were implemented in the production of the lithospheric magnetic anomaly map from Magsat satellite magnetometer data of East Asia between $90^{\circ}E-150^{\circ}E$ and $10^{\circ}S-50^{\circ}N$. Procedures included more effective selection of the do·it and dawn tracks, ring current correction, and separation of core field and external field effects. External field reductions included an ionospheric correction and pass-by-pass correlation analysis. Track-line noise effects were reduced by spectral reconstruction of the dusk and dawn data sets. The total field magnetic anomalies were differentially-reduced-to-the-pole to minimize distortion s between satellite magnetic anomalies and their geological sources caused by corefield variations over the study area. Aeromagnetic anomalies were correlated with Magsat magnetic anomalies at the satellite altitude to test the lithospheric veracity of anomalies in these two data sets. The aeromagnetic anomalies were low-pass filtered to eliminate high frequency components that may not be shown at the satellite altitude. Although the two maps have a low CC of 0.243, there are many features that are directly correlated (peak-to-peak and trough-to-trough). The low CC between the two maps was generated by the combination of directly- and inversely-correlative anomaly features between them. It is very difficult to discriminate directly, inversely, and nully correlative features in these two anomaly maps because features are complicatedly correlated due to the depth and superposition of the anomaly sources. In general, the lithospheric magnetic components were recovered successfully from satellite magnetometer observations and correlated well with aeromagnetic anomalies in the study area.

Combined Static and Dynamic Platform Calibration for an Aerial Multi-Camera System

  • Cui, Hong-Xia;Liu, Jia-Qi;Su, Guo-Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2689-2708
    • /
    • 2016
  • Multi-camera systems which integrate two or more low-cost digital cameras are adopted to reach higher ground coverage and improve the base-height ratio in low altitude remote sensing. To guarantee accurate multi-camera integration, the geometric relationship among cameras must be determined through platform calibration techniques. This paper proposed a combined two-step platform calibration method. In the first step, the static platform calibration was conducted based on the stable relative orientation constraint and convergent conditions among cameras in static environments. In the second step, a dynamic platform self-calibration approach was proposed based on not only tie points but also straight lines in order to correct the small change of the relative relationship among cameras during dynamic flight. Experiments based on the proposed two-step platform calibration method were carried out with terrestrial and aerial images from a multi-camera system combined with four consumer-grade digital cameras onboard an unmanned aerial vehicle. The experimental results have shown that the proposed platform calibration approach is able to compensate the varied relative relationship during flight, acquiring the mosaicing accuracy of virtual images smaller than 0.5pixel. The proposed approach can be extended for calibrating other low-cost multi-camera system without rigorously mechanical structure.

Gravity Estimation by Using Low-Low Inter-Satellite Tracking Data (저궤도 위성간 추적데이터를 이용한 지구중력장 측정)

  • Kim,Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.58-68
    • /
    • 2003
  • Accurate estimation of the Earth gravity field plays an important role in understanding the Earth geodynamic activities. After brief discussion on the objective of the gravity estimation, dedicated satellite missions for this purpose are described. Recently launched NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is described. For the performance analysis, full numerical simulation was performed. The simulation procedure and its key instrument modelings are described. From the simulation results, a significant improvement on the Earth gravity field accuracy is expected.

Determination of Ionospheric Delay Scale Factor for Low Earth Orbit using the International Reference Ionosphere Model (IRI 모델을 이용한 저궤도 전리층 지연값 배율 결정)

  • Kim, Jeongrae;Kim, Mingyu
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.331-339
    • /
    • 2014
  • Determination of an ionospheric delay scale factor, which converts ground-based ionospheric delay into low Earth orbit ionospheric delay, using the international reference ionosphere model is proposed. Ionospheric delay from international GNSS service model combined with IRI-derived scale factor is evaluated with NASA GRACE satellite data. At approximately 480km altitude, mean and standard deviation of the scale factor are 0.25 and 0.01 in 2004. The scale factor reaches high in night time and Spring and Fall seasons. Ionospheric delay error by the proposed method has a mean of 3.50 TECU in 2004.

The Effects of Golf Course Construction on the Geomorphic Characteristics of a Small Watershed (골프장 조성이 소유역의 지형적 특성에 미치는 영향 분석)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.41-50
    • /
    • 1999
  • The purpose of this study is to find out the changes in geomorphic characteristics of a small watershed when a golf course is constructed. The research site is a set of seven small watersheds including an 18-hole golf course that were randomly selected. The size, shape, and drainage network of watersheds were measured by using planimeter, watershed eccentricity, and stream order, respectively. In addition, a 25m$\times$25m mesh was used on topographic maps and grading plans in order to obtain the slope, elevation, and aspect of the watersheds. The major results of this research, while investigating of the changes in geomorphic characteristics of watersheds when a golf course is constructed, are as follows: 1. The size of watersheds is increased in accordance to the difference in elevation between the golf course site and the small watershed. 2. The watershed eccentricities are in general similar except for a few low-valued cases. 3. The changes in the average altitude and the gradient are more drastic with their bigger original values. 4. The aspects are changed more with decreasing elevation. 5. The stream order decreases in the case of a low watershed eccentricity. 6. The surface modification has a closer relationship to the slope rather than the size of effective use area. 7. With a steeper gradient and an excessively low gradient, the height of cutting/filling is increased.

  • PDF

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Research Advances of Leptotrombidium scutellare in China

  • Xiang, Rong;Guo, Xian-Guo
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Leptotrombidium scutellare is one of the 6 main vectors of scrub typhus in China. It has been found in more than 15 provinces of China. Especially in Yunnan, it was found to be mainly distributed in some mountainous areas with high altitude, low temperature and low precipitation. Rodents and some other small mammals were the most common hosts of L. scutellare. To date, more than 40 host species of L. scutellare have been recorded with very low host specificity, and the main hosts varied in different geographical regions. L. scutellare had a strong resistance against the cold environment, and the temperature and humidity were 2 important factors affecting its growth and development. Among different individuals of their rodent hosts, L. scutellare mites often showed an aggregated distribution pattern, which reflected the interspecific cooperation of the mites. The chromosome karyotype of L. scutellare was 2n=16 and all the 8 pairs of chromosomes were short rod-shaped with metacentric or sub-metacentric types. The isozyme spectrum supported that L. scutellare, L. deliense and L. rubellum were in the same species group. Based on the natural infection, experimental transmission and epidemiological evidence, L. scutellare has been eventually confirmed as the second major vector of scrub typhus in China, which is second only to L. deliense.

Accuracy Analysis of Ionospheric Delay of Low Earth Orbit Satellites by using NeQuick G Model

  • Bak, Serim;Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.363-369
    • /
    • 2021
  • Since the Global Navigation Satellite System (GNSS) signal received from the low Earth orbit (LEO) satellite is only affected by the upper ionosphere, the magnitude of the ionospheric delay of Global Positioning System (GPS) signal received from ground user is different. Therefore, the ground-based two-dimensional ionospheric model cannot be applied to LEO satellites. The NeQuick model used in Galileo provides the ionospheric delay according to the user's altitude, so it can be used in the ionospheric model of the LEO satellites. However, the NeQuick model is not suitable for space receivers because of the high computational cost. A simplified NeQuick model with reduced computing time was recently presented. In this study, the computing time of the NeQuick model and the simplified NeQuick model was analyzed based on the GPS Klobuchar model. The NeQuick and simplified NeQuick model were applied to the GNSS data from GRACE-B, Swarm-C, and GOCE satellites to analyze the performance of the ionospheric correction and positioning. The difference in computing time between the NeQuick and simplified NeQuick model was up to 90%, but the difference in ionospheric accuracy was not as large as within 4.5%.

Basic Study of Architectural Design Using low-cost, low-altitute photogrammertric system (저비용 UAV를 이용한 저고도 항공촬영 영상지도 제작방법의 건축설계 활용을 위한 기초연구)

  • Ahn, Kiljae;Kim, Yongsung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.4
    • /
    • pp.789-796
    • /
    • 2015
  • The first phase of architecture design is the field survey of the site and its surroundings. To gather the information there are two methods :the traditional method of an onsite survey, and recently using 3D geometry data and high quality image mapping from online services such as Google Earth. However, the urban condition is fast changing, and information from online services may lack sufficient information. This paper presents the to fast and effective site survey method for urban site using an affordable and fully automated UAV for the architectural design field.

A New species of Viola (Violaceae): V. ulleungdoensis M. Kim & J. Lee (제비꽃속(제비꽃과)의 신종: 울릉제비꽃(Viola ulleungdoensis M. Kim & J. Lee))

  • Lee, Jungsim;Choi, Changhak;Han, Kyeongsuk;So, Soonku;Hwang, Yong;Kim, Muyeol
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.3
    • /
    • pp.202-206
    • /
    • 2012
  • A new species, Viola ulleungdoensis M. Kim & J. Lee is named and described from Is. Ulleung, Gyeongsangbukdo Province, Korea. Molecular data confirmed that this new taxon was distinguished from other congeneric species. The Viola ulleungdoensis shares several characteristics (acaulescent leaves, beardless lateral petals, glabrous petioles and peduncles, etc.) with its related species V. selkirkii, but is distinct from V. selkirkii which has present adventitious buds, same leaves after flowering, small leaves, and high altitude habitats by having absent adventitious buds, larger leaves after flowering, large leaves, and low altitude habitats.