DOI QR코드

DOI QR Code

Determination of Ionospheric Delay Scale Factor for Low Earth Orbit using the International Reference Ionosphere Model

IRI 모델을 이용한 저궤도 전리층 지연값 배율 결정

  • Kim, Jeongrae (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Mingyu (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 김정래 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김민규 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2014.03.14
  • Accepted : 2014.04.28
  • Published : 2014.04.30

Abstract

Determination of an ionospheric delay scale factor, which converts ground-based ionospheric delay into low Earth orbit ionospheric delay, using the international reference ionosphere model is proposed. Ionospheric delay from international GNSS service model combined with IRI-derived scale factor is evaluated with NASA GRACE satellite data. At approximately 480km altitude, mean and standard deviation of the scale factor are 0.25 and 0.01 in 2004. The scale factor reaches high in night time and Spring and Fall seasons. Ionospheric delay error by the proposed method has a mean of 3.50 TECU in 2004.

지상기반 전리층모델로 계산한 전리층 지연값을 저궤도에서의 전리층 지연값으로 변환하기 위해서는 전리층 변환 배율 적용해야 하는데, 이러한 배율을 IRI 전리층모델을 사용하여 결정하는 기법을 제안하였다. IGS 전리층모델에 전리층 배율을 적용하여 계산한 전리층 지연값을 NASA GRACE 위성의 관측값과 비교하였다. 약 480 km 고도에서 2004년 평균 배율은 0.25이며, 표준편차는 0.01이다. 전리층 배율은 주간에 비해 야간에 상대적으로 증가하며, 계절적으로는 봄, 가을에 높은 값을 가진다. IGS모델에 전리층배율을 결합해서 추정한 저궤도 전리층 지연값 추정 오차 평균은 3.50 TECU이다.

Keywords

References

  1. Berthias, J.P., P. Broca, A. Comps, S. Gratton, D. Laurichesse, and F. Mercier, 2001. Lessons learned from the use of a GPS receiver in less than optimal conditions. Proc. of 16th International Symposium on Space Flight Dynamics, Pasadena, California, USA, 3-7 December.
  2. Bilitza, D., 1990. International Reference Ionosphere 1990, NSSDC 90-22, Greenbelt, Maryland, 1990.
  3. Bilitza, D., 2001, International Reference Ionosphere 2000, Radio Science, 36(2): 261-275. https://doi.org/10.1029/2000RS002432
  4. Case, K., G. Kruizinga, and S. Wu, 2010. GRACE level 1B data product user handbook, JPL Publication, D-22027, Pasadena, CA, USA.
  5. Garcia-Fernandez, M., and O. Montenbruck, 2006. LEO satellite navigation errors and vertical total electron content in single-frequency GPS tracking, Radio Science, 41(5): RS5001 https://doi.org/10.1029/2005rs003420
  6. Hwang, Y. and G.H. Born, 2005, Orbit determination strategy using single-frequency global-positioning-system data, Journal of Spacecraft and Rockets, 42(5): 896-901. https://doi.org/10.2514/1.9573
  7. Kenpankho, P., P. Supnithi, T. Tsugawa, and T. Maruyama, 2011. Variation of ionospheric slab thickness observations at chumphon equatorial magnetic location, Earth Planets Space, 63(4): 359-364. https://doi.org/10.5047/eps.2011.03.003
  8. Kim, J., 2000. Simulation study of a low-low satelliteto-satellite tracking mission, Report CSR-00-02, Center for Space Research, The University of Texas at Austin, Austin, Texas, USA.
  9. Lear, W.M., 1987, GPS navigation for low-Earth orbiting vehicles, NASA 87-FM-2, JSC-32031, rev. 1, Lyndon B. Johnson Space Center, Houston, Texas.
  10. Leick, A., 1994, GPS Satellite Surveying, 2nd edition, John Wiley & Sons.
  11. Montenbruck O., and E. Gill, 2002. Ionospheric correction for GPS tracking of LEO satellites, Journal of Navigation, 55: 293-304.
  12. Montenbruck, O., 2003. Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements, Aerospace Science and Technology, 7: 396-405. https://doi.org/10.1016/S1270-9638(03)00034-8
  13. NASA, 2014, International Reference Ionosphere, http://iri.gsfc.nasa.gov/.
  14. Tancredi U., A. Renga, and M. Grassi, 2011. Ionospheric path delay models for spaceborne GPS receivers flying in formation with large baselines, Advances in Space Research, 48(3): 507-520. https://doi.org/10.1016/j.asr.2011.03.041
  15. Yoon, J.C., K.M. Roh, E.S. Park, B.Y. Moon, K.H. Choi, J.S. Lee, B.S. Lee, J. Kim, and Y.K. Chang, 2002. Orbit determination of spacecraft using Global Positioning System single frequency measurements, Journal of Spacecraft and Rockets, 39(5): 796-801. https://doi.org/10.2514/2.3881
  16. Yue, X., W.S. Schreiner, D. C. Hunt, C. Rocken, and Y.H. Kuo, 2011. Quantitative evaluation of the low Earth orbit satellite based slant total electron, Space Weather, 9: S09001
  17. Yunck, T.P., 1996. Orbit determination, Global positioning system, Theory and Applications, AIAA Publications, Washington, DC, USA.
  18. Yang, Y., Y. Li, A.G. Dempster, and C. Rizos, 2013. Ionospheric path delay modelling for spacecraft formation flying, International Global Navigation Satellite Systems Society Symposium 2013, Queensland, Australia, July 16-18.

Cited by

  1. NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정 vol.22, pp.4, 2018, https://doi.org/10.12673/jant.2018.22.4.271
  2. NeQuick G model based scale factor determination for using SBAS ionosphere corrections at low earth orbit vol.65, pp.5, 2014, https://doi.org/10.1016/j.asr.2019.11.038
  3. Accuracy Analysis of Ionospheric Delay of Low Earth Orbit Satellites by using NeQuick G Model vol.10, pp.4, 2021, https://doi.org/10.11003/jpnt.2021.10.4.363