• Title/Summary/Keyword: Low-Voltage Power Distribution System

Search Result 159, Processing Time 0.037 seconds

A Reliability Analysis in LVDC Distribution System Considering Power Quality (전력품질을 고려한 LVDC 배전계통의 신뢰도 분석)

  • Noh, Chul-Ho;Kim, Chung-Mo;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.

Comparison of Voltage Unbalance Factor for Line and Phase Voltage (선간전압과 상전압에 대한 전압불평형율의 비교)

  • Kim Jong-Gyeum;Park Young-Jeen;Lee Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.403-407
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetric components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved by the unbalanced load at the 3-phase 4-wire system. Line and phase voltage unbalance leads to different results due to zero-sequence component. So that it is difficult to analyse voltage unbalance factor by the conventional analytical method, This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

The Study on Permissible Capacity of Distributed Generation Considering Voltage Variation and Load Capacity at the LV Distribution Power System (전압변동과 부하량을 고려한 저압배전계통의 분산전원 설치용량 분석)

  • Moon, Won-Sik;Cho, Sung-Min;Shin, Hee-Sang;Lee, Hee-Tae;Han, Woon-Ki;Choo, Dong-Wook;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.100-105
    • /
    • 2010
  • This paper describes a capacity of distributed generation which will be interconnected at low voltage distribution systems. In order to set the capacity of distributed generation, a voltage variation of distribution system is considered. Besides, the capacity of distributed generation is classified according to a capacity of pole transformer and loads. The system constructions in this paper are analyzed by using PSCAD/EMTDC. In the immediate future, it is expected to increase the installation of New and renewable energy systems which are generally interconnected to distribution power systems in the form of distributed generations like photovoltaic system, wind power and fuel cell. So the study of this kind would be needed to limit the capacity of distributed generation.

A Techno-Economic Feasibility Analysis on LVDC Distribution System for Rural Electrification in South Korea

  • Afamefuna, David;Chung, Il-Yop;Hur, Don;Kim, Ju-Yong;Cho, Jintae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1501-1510
    • /
    • 2014
  • Low voltage direct current (LVDC) distribution system is a suitable techno-economic candidate which can create an innovative solution for distribution network development with respect to rural electrification. This research focuses on the use of LVDC distribution system to replace some of KEPCO's existing traditional medium voltage alternating current (MVAC) distribution network for rural electrification in South Korea. Considering the technical and economic risks and benefits involved in such project, a comparative techno-economic analysis on the LVDC and the MVAC distribution networks is conducted using economic assessment method such as the net present value (NPV) on a discounted cash flow (DCF) basis as well as the sensitivity analysis technique. Each would play a role in an economic performance indicator and a measure of uncertainty and risk involved in the project. In this work, a simulation model and a computational tool are concurrently developed and employed to aid the techno-economic analysis, evaluation, and estimation of the various systems efficiency and/or performance.

Voltage Unbalance Factor for Phase and Line Voltage (상전압 및 선간전압에 대한 불평형율)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Lee, Jong-Han;Lee, Eun-Wong;Park, Jong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.74-77
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetrical components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved at the 3-phase 4-wire system by the unbalanced load, by the conventional analytical method, line and phase voltage unbalance leads to different results due to zero-sequence component. This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Field Trial of Power Line Communication Access Network over Medium Voltage Power Distribution Grid (고압 배전선로를 이용한 고속 전력선 통신 가입자망 구축 연구)

  • Lee, Jae-Jo;Oh, Hui-Myoung;Park, Young-Jin;Kim, Kwan-Ho;Lee, Dae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3040-3042
    • /
    • 2005
  • During the last several years, interest in broad-band power line communications (PLC) has been grown over medium voltage(MV) power distribution lines as well as low voltage lines. This paper introduces a medium voltage PLC test field that is set up in the suburbs of Euiwang city in Korea. This test field could be used not only for the measurement of communication channel environment but also for internet service. This paper shows the configuration of medium voltage test field with network devices like MV signal coupler and the results of channel environment like noise and impulse response. It also shows the service performance of PLC access network through network management system.

  • PDF

On-Grid Hybrid PCS Control considering the Momentary Voltage Sag (순간전압강하를 고려한 계통연계형 하이브리드 PCS 제어)

  • Lee, Yong-Sik;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1330-1331
    • /
    • 2011
  • The on-grid distributed power system operated antiislanding due to the momently voltage sag of the power system, fault and etc. According to the 'Dispersed Generations in Distribution Systems Connection Technology Standard', the utilizable time ratio of PCS is low because of being put into in the steady state of the power system after 5 minutes. In this paper, the output characteristic is optimized with the hybrid system consisting of the wind system and PV system. And energy of hybrid system is supplied to the power system. Also, DVR function was applied to PCS to compensate the voltage sag frequently happening for a power system. The control performance of the proposed hybrid PCS is analyzed and simulated using PSIM to validate the system performace.

  • PDF

Load Flow Calculation and Short Circuit Faults Transients in Dispersed Generation Systems

  • Hosseini, Seyed Hossein;Shahnia, Farhad;Tizghadam, Saeed
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.800-804
    • /
    • 2005
  • Load flow and short circuit fault transients of a power distribution system with wind turbines as dispersed generation units is presented. Usage of renewable energies such as wind is already a small part of total installed power system in medium and low voltage networks. In this paper, a radial power distribution system with wind turbines is simulated using DIgSILENT PowerFactory software for their influence on load flow and short circuit fault transients. Short fault occurring in dispersed generation systems causes some problems for the system and costumers such as fault level increase or the problems of sudden fluctuations in the current, voltage, power and torque of the double fed induction machine utilized in the wind turbines which have been studied and investigated.

  • PDF