• Title/Summary/Keyword: Low-Temperature cofiring

Search Result 18, Processing Time 0.02 seconds

Fabrication of Photoimageable Silver Paste for Low-Temperature Cofiring Using Acrylic Binder Polymers and Photosensitive Materials

  • Park, Seong-Dae;Yoo, Myong-Jae;Kang, Nam-Kee;Park, Jong-Chul;Lim, Jin-Kyu;Kim, Dong-Kook
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.391-398
    • /
    • 2004
  • Thick-film photolithography is a new technology that combines lithography processes, such as exposure and development, with the conventional thick-film process applied to screen-printing. In this study, we developed a low-temperature cofireable silver paste applicable for thick-film processing to form fine lines using photolitho-graphic technologies. The optimum paste composition for forming fine lines was investigated. The effect of processing parameters, such as the exposing dose, had on the fine-line resolution was also investigated. As the result, we found that the type of polymer and monomer, the silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of the fine lines. The developed photoimageable silver paste was printed on a low-temperature cofireable green sheet, dried, exposed, developed in an aqueous process, laminated, and then fired. Our results demonstrate that thick-film fine lines having widths < 20 $\mu\textrm{m}$ can be obtained after cofiring.

Photolithographic Properties of Photosensitive Ag Paste for Low Temperature Cofiring (저온동시소성용 감광성 은(Ag)페이스트의 광식각 특성)

  • Park, Seong-Dae;Kang, Na-Min;Lim, Jin-Kyu;Kim, Dong-Kook;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.313-322
    • /
    • 2004
  • Thick film photolithography is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process including screen-printing. In this research, low-temperature cofireable silver paste, which enabled the formation of thick film fine-line using photolithographic technology, was developed. The optimum composition for fine-line forming was studied by adjusting the amounts of silver powder, polymer and monomer, and the additional amount of photoinitiator, and then the effect of processing parameter such as exposing dose on the formation of fine-line was also tested. As the result, it was found that the ratio of polymer to monomer, silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of fine-line. The developed photosensitive silver paste was printed on low-temperature cofireable green sheet, then dried, exposed, developed in aqueous process, laminated, and fired. Results showed that the thick film fine-line under 20$\mu\textrm{m}$ width could be obtained after cofiring.

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (IV) Metallizing by Using Cu Powder Coated by Sol-Gel Method (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(IV) Sol-Gel법으로 코팅한 Cu분말을 이용한 Metallizing)

  • 김병호;문성훈;이근헌;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.427-435
    • /
    • 1994
  • Cu-metallized low firing temperature substrates were synthesized by cofiring green sheet of cordierite-based glass with Cu. By Sol-Gel method, Cu powder was coated with borosilicate gel which should act as a glass frit in Cu paste during cofiring. Theoretical weight ratios of Glass/Cu were controlled to be 2.5, 5, 10 and 15% by varying alkoxide concentrations. Average particle size of coated Cu was 0.629~0.674 ${\mu}{\textrm}{m}$ in comparison to that of as-received Cu(0.596 ${\mu}{\textrm}{m}$), which increased with alkoxide concentration but did not increase above certain concentration. The weight ratios of coated layer were 2.11~5.37%. The properties of Cu-metallized low firing temperature substrate, cofired at 90$0^{\circ}C$ for 1h under H2/N2 atmosphere, were as follows; sheet resistance was 13~43 m{{{{ OMEGA }}/$\square$, adhesion strength was 1.0~2.1 kgf/$\textrm{mm}^2$. From the observations of SEM photographs, the gel coated on Cu performed excellently as a glass frit.

  • PDF

An Integrated LTCC Inductor and Its Application (LTCC 기술을 이용한 마이크로 인덕터 및 응용)

  • Kim Chan-Young;Kim Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.680-686
    • /
    • 2004
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) technology was fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn x 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1.32W output power and 1MHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 81% was obtained.

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers (동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자)

  • Ok Yeon Hong;Seok-Hong Min
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.537-549
    • /
    • 2023
  • The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

Fabrication of Low Temperature Cofiring Substrate Containing Fluorine by Water Swelling (Water Swelling을 이용한 Fluorine함유 저온소결 기판의 제조)

  • 윤영진;최정헌;이용수;강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • Glass composed of $Li_2$O.MgO. $MgF_2$.$SiO_2$.$B_2O_3$ for the fabrication of green sheet was prepared by melting process, and glass ceramics was prepared by the process of nucleation and grystal growth for the glass of $Li_2$O.MgO. $MgF_2$.$SiO_2$.$B_2O_3$ system with Lithium fluorhectorite and Lithium boron fluorphlogopite crystal phase. Powderization of the glass ceramics was carried out by water swelling. The average particle size at this point was 2.574 $\mu\textrm{m}$. Slurry was prepared for green sheet using high viscous sol fabricated by water swelling, which shows cleavage phenomenon in prepared glass ceramics. The optimum ratio of powder to water for the tape casting was 18:100, and its viscosity was 11,000~14,000 cps.

  • PDF

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (III) Fabrication of substrates by tape casting process (저온소결 세라믹기판용 Cordierite계 결정화 유리의 합성 및 특성조사에 관한 연구;(III) Tape casting에 의한 기판 제조)

  • 김병호;문성훈;이근헌;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.845-851
    • /
    • 1993
  • Low firing temperature substrate were synthesized through tape casting and sintering of glass with cordierite composition and then their properties were investigated. Even though the dielectric properties and XRD patterns of substrates, obtained by tape casting and sintering at 900~100$0^{\circ}C$ for various periods, were similar to those of substrates obtained by dry pressing, the sinterability was enhanced. The substrates were thin and the size was 0.6$\times$50$\times$50mm. From the results of dielectric properties, the sinterability and X-ray diffraction pattern, the proper condition for cofiring process with conductor, Cu, was 90$0^{\circ}C$ for 1h. The properties of the substrate are as follows; the dielectric constant was 5.31(at 1MHz), the dissipation factor was 0.0028, the apparent porosity was 0.28% and the main crystalline phase was $\alpha$-cordierite.

  • PDF

A DC-DC Converter using LTCC Technology (LTCC 기술을 이용한 DC-DC 컨버터)

  • Kim, Chan-Young;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.150-152
    • /
    • 2004
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) technology was fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn x 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1.32W output power and 1MHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 81% was obtained.

  • PDF

An Integrated LTCC Inductor and Its Application (LTCC 기술을 이용한 마이크로 인덕터의 개발과 응용)

  • Kim, Chan-Young;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.129-132
    • /
    • 2004
  • An integrated inductor using low temperature cofiring ceramics(LTCC) technology has been fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn $\times$ 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick, For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured value. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1W output power and 1MHz switching frequency using the inductor has been developed. For the converter the maximum efficiency of about 81% was obtained.

  • PDF