• 제목/요약/키워드: Low-Salinity Water

검색결과 544건 처리시간 0.025초

Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구 (Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite)

  • 이동규
    • 한국수산과학회지
    • /
    • 제51권2호
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

동해의 가을철 저염수 분포 및 유동 (Distribution and Circulation of Autumn Low-salinity Water in the East Sea)

  • 이동규;이재철
    • 한국수산과학회지
    • /
    • 제50권2호
    • /
    • pp.207-218
    • /
    • 2017
  • Seawater with salinity of 32.5 psu or less is observed in the southern Japan/East Sea (JES) every autumn. It is confined to a surface layer 30-45 m in depth that expands to cover the entire JES in October. Two sources of "autumn low-salinity water" have been identified from historical hydrographic data in the western JES: East China Sea (ECS) water mixed with fresh water discharge from the Yangtze River (Changjiang) and seawater diluted with melted sea ice in the northern JES. Low-salinity water inflow from the ECS begins in June and reaches its peak in September. Low-salinity water from the northern JES expands southward along the coast, and its horizontal distribution varies among years. A rare observational study of the entire JES in October 1969 indicated that water with salinity less than 33.0 psu covered the southwestern JES; the lowest salinity water was found near the Ulleung Basin. In October 1995, the vertical distribution of salinity observed in a meridional section revealed that water with salinity of 33.6 psu or less was present in the area north of the subpolar front.

Structure and Source of Low Salinity Water Observed During May in the Cheju Strait

  • Byun, Sang-Kyung
    • Journal of the korean society of oceanography
    • /
    • 제35권4호
    • /
    • pp.170-178
    • /
    • 2000
  • Low salinity water was observed during May in the Cheju Strait. Its structure and source were studied by using both the hydrographic data collected not only in the Cheju Strait during 1987-1989 but also in the wider area around Cheju Island extending to the Bank of Changjiang river in 1994 and the current data taken in the Strait during 1987-1989. The water had lower values of temperature, salinity, and density compared with the surrounding water and it was found in the surface layer outside of Tsushima Current Water 10-50 km off Cheju coast. The density of low salinity water was more dependent on salinity than on temperature. The low salinity water flowed into the Strait from the west as a series of intermittent waters whose size was variable in width and in thickness. The low salinity water was originated from the Chanajiang River Diluted Water. In the Cheju Strait, the water showed changes within 3 days on time and 30-50 km on space, and its sudden appearance was marked especially in May. Such strong variability and sudden appearance may be attributed to the beginning stage in May when the fresh water of Changjiang River Diluted Water starts to arrive in the Cheju Strait.

  • PDF

간척지 벼 재배시 토양 및 관개수 염의 안전 한계농도 (Critical Saline Concentration of Soil and Water for Rice Cultivation on a Reclaimed Saline Soil)

  • 최원영;이규성;고종철;최송열;최돈향
    • 한국작물학회지
    • /
    • 제48권3호
    • /
    • pp.238-242
    • /
    • 2003
  • 본 연구는 간척지 토양 염농도별(저염; 0.1-0.2%, 중염; 0.3~0.4%)로 분얼기 관개수 염수처리 농도에 따른 벼 생육 및 수량성을 검토하고자 시험한 결과를 요약하면 다음과 같다. 가. 토양 및 관개수 염농도가 높을수록 초장은 짧았고 주당경수도 적었으며, 특히 중염 토양에서 관개수 염농도 0.3% 이상에서는 모두 고사되었다. 나. 토양 및 관개수 염농도가 높을수록 출수는 지연되었으며, 토양 염농도간에는 중염 토양에서 저염 토양보다 2-5일 정도 늦었다. 다. 간장은 관개수 염농도가 높을수록 짧았고 중염 토양이 저염 토양보다 짧았으며. 수장도 같은 경향이었다. 라. 저염토양에서는 관개수 염농도가 높을수록 $\textrm{m}^2$ 당립수가 적고 등숙비율이 낮아, 쌀수량은 민물 관개 수량에 비해 관개수 0.l%는 92%, 0.3%는 84%, 0.5%는 56%, 0.7%는 36% 수준이었다. 중염토양의 쌀수량은 저염토양 민물 관개 수량에 비해 민물 관개는 62%, 0.1% 관개수에서는 30% 수준이었다. 따라서 관개수 염농도가 저염 토양은 0.7%, 중염 토양은 0.3%까지 생육은 가능하나 수량 감소가 커서, 소득지수로 볼때 간척지 쌀 생산 한계 관개수 염농도는 저염 토양은 0.5% 이하에서, 중염 토양은 민물 관개수에서 가능하였다.

Detection of low Salinity Water in the Northern East China Sea During Summer using Ocean Color Remote Sensing

  • Suh, Young-Sang;Jang, Lee-Hyun;Lee, Na-Kyung
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.153-162
    • /
    • 2004
  • In the summer of 1998-2001, a huge flood occurred in the Yangtze River in the eastern China. Low salinity water less than 28 psu from the river was detected around the southwestern part of the Jeju Island, which is located in the southern part of the Korean Peninsula. We studied how to detect low salinity water from the Yangtze River, that cause a terrible damage to the Korean fisheries. We established a relationships between low salinity at surface, turbid water from the Yangtze River and digital ocean color remotely sensed data of SeaWiFS sensor in the northern East China Sea, in the summer of 1998, 1999, 2000 and 2001. The salinity charts of the northern East China Sea were created by regeneration of the satellite ocean color data using the empirical formula from the relationships between in situ low salinity, in situ measured turbid water with transparency and SeaWiFS ocean color data (normalized water leaving radiance of 490 nm/555 nm).

Detection of low salinity water in the northern East China Sea in summer using ocean color remote sensing

  • Suh, Young-Sang;Jang, Lee-Hyun;Lee, Na-Kyung;Kim, Bok-Kee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.649-654
    • /
    • 2002
  • In summer season of 1998, a huge flood occurred around the Yangtze River in the eastern China. The low salinity water less than 28 psu from the river was detected around the southeastern part of the Jeju Island which is located in the southern part of the Korean peninsula. We studied how to detect low salinity water from the Yangtze River, which gives terrible damages to the Korean fisheries. We got the relationships between low surface salinity, turbid water from the Yangtze River and digital ocean color using remote sensing of SeaWiFS satellite in the northern East China Sea in summer seanson of 1998, 1999, 2000 and 2001. The charts of salinity in the northern East China Sea were made by the regenerating of the satellite ocean color data with the formula from the relationships between low salinity, in situ turbid water (transparency) and satellite ocean color.

  • PDF

The Inflow Path of the East Sea Intermediate Water into the Ulleung Basin in July 2005

  • Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • 제28권2호
    • /
    • pp.153-161
    • /
    • 2006
  • To investigate inflow path of the East Sea Intermediate Water (ESIW) into the Ulleung Basin, hydrographic data surveyed in July 2005 were analyzed. The ESIW was characterized by the Salinity Minimum Layer (SML) within a depth range of 100 to 360 meters. Averaged potential temperature and salinity of the SML were $1.835^{\circ}C$ and 34.049 psu, respectively. Mean potential density $({\sigma}_{\theta})$ of the SML was 27.221 with a standard deviation of 0.0393. On isopycnal surfaces of 27.14 and 27.18 $({\sigma}_{\theta})$ which correspond to upper layers of the ESIW, the coastal low salinity water was separated from the offshore low salinity water by the relatively warm and saline water which might be affected by the Tsushima Warm Current Water. Relatively cold and fresh water, however, intruded into the Ulleung Basin from the region of Korean coast on isopycnal surfaces of 27.22 and 27.26 which was lower layer of the ESIW. The salinity distribution in the isopycnal layer of $27.14{\sim}27.26$ with acceleration potential on 27.22 up surface also showed clearly that the low salinity water flowed from the coastal area and intruded into the Ulleung Basin. This implies that the ESIW flows ken the north to the south along the east coasts of Korea and spreads into the Ulleung Basin in summer.

Growth Charateristics of Five Microalgal Species Isolated from Jeju Island and Four Microalgal stock Strans in Hatchery

  • Lee, Joon-Baek
    • ALGAE
    • /
    • 제17권2호
    • /
    • pp.117-125
    • /
    • 2002
  • Five microalgal species isolated from the Jeju coast and four microalgal stock strains in hatchery were cultured in order to investigate their adapation to extreme changes in environmental factors such as salinity, water temperatue, adn nutrients. In case of salinity variation, Nitzschia sp. of Bacillariophyceae, Isochrysis galbana of Haptophyceae and Tetraselmis gracilis of Prasinophyceae showed optimum growth at the low salinity of 20 and 25 psu. Amphora coffeaeformis and Chetoceros simplex of Bacillariophyceae, and Pavlova lutheri of Haptophyceae adapted well at the relatively high salinities of 30 and 35 psu. However Phaeodactylum tricornutum of Bacillariophyceae and Chlorella sp. of Chlorophyceae showed euryhaline property In case of water temperature variation, most of all the species studied wer inhibited at 10℃. C. simplex, Nitzschia sp., p. tricornutum, Chlorella sp. and T. gracilis grew well at above 20℃. A. coffeaeformis, I. galbana and P. lutheri adapted also at the high temperature of 30℃. Each microalgal strain showed different growth rates and its maximum biomass. Generally microalgal populations from the Jeju coast grow well in relatively high salinity and high water temperature. Their growth were inhibited at low water temperature, but not likely affected at low salinity. This study indicates that the microalgal populations could not be affected by abnormally low salinity phenomena, which have happened occasionally around the west Jeju coast in summer and have led macrobenthic animals to mass mortality.

Southward Intrusion of the East Sea Intermediate Water into the Ulleung Basin: Observations in 1992 and 1993

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • 제33권4호
    • /
    • pp.146-156
    • /
    • 1998
  • Hydrographic data retrieved in the southwestern part of the East Sea in 1992-1993 were analyzed to investigate the probability of southward intrusion of the East Sea Intermediate Water (ESIW) into the Ulleung Basin. The ESIW showed the ranges of 1 to 4$^{\circ}$C in potential temperature, 33.80-34.06 psu in salinity, and 26.9-27.3 kg/m$^3$ in potential density (${\sigma}$$_{\theta}$). The mean depth occupied by the ESIW was 170 m, where the characteristic values of the above three were 2.64$^{\circ}$C , 34.02 psu, and 27.13 kg/m$^3$, respectively. One of the most prominent features of the ESIW was that its salinity changed not only seasonally but also interannually. It was low in summer and high in winter. The salinity within the isopycnal layer of 26.9-27.3 kg/m$^3$ was closely related with the potential vorticity (${\rho}$$_{\theta}^{-1}$ f ${\varrho}$${\rho}_{\theta}$/${\varrho}$z), being in direct proportion to the salinity. This implies that the low-salinity water was thicker than the high-salinity water. The flow path of the ESIW was investigated by tracking the low-salinity or the low-potential vorticity water and by referring to acceleration potential. Careful analysis of the flow path proves that the ESIW intrudes from the north between the Korean coast and Ulleung Island into the Ulleung Basin in summer. Existence of the high-potential vorticity water in the Ulleung Basin is associated with the interruption of the inflow of low-salinity water.

  • PDF

하계 서해안 새만금 연안역 주변 저염수와 순환 (Low-salinity Water and Circulation in Summer around Saemangeum Area in the West Coast of Korea)

  • 이상호;최현용;손영태;권효근;김영곤;양재삼;정해진;김종구
    • 한국해양학회지:바다
    • /
    • 제8권2호
    • /
    • pp.138-150
    • /
    • 2003
  • 만경강과 동진강이 담수를 유출하는 서해중부 연안에서 41,000 ha의 하구 천해역을 간척하기 위해 33 km의 새만금 방조제가 건설되고 있다. 이 연안역에 담수의 주 공급원은 방조제 북쪽에 위치하는 금강이다 현재 고군산군도 와 연결되고 있는 방조제는 이 해역을 세 지역으로 나누는데 방조제의 북서, 남서 그리고 동부(새만금) 지역이고, 새만금 지역 해수는 북방조제에 한 곳과 남방조제에 두 곳인 미축조 구간을 통해 교환된다. 이 연안역에서 저염수와 관련된 하계순환을 진단하기 위해 1998년과 1999년에 수온과 염분의 분포와 구조를 관측하였다. 북방조제 외측지역의 표층에서는 저염수의 혀모양 분포가 관측되었는데, 금강하구 입구에서 북서쪽으로 60 km까지 확장하고 외해수와 경계지어지는 강한 풀룸전선을 형성한다. 새만금 방조제 내측에서 염분분포는 두 강물이 병합되고 있으며 저염수가 북방조제 미축조 구간쪽으로 편향되었음을 보여준다. 남방조제 외측지역 표층에서는 곰소만으로부터 북쪽으로 확장하는 다른 저염수의 작은 혀모양 분포가 관측되었다. 이러한 저염수 분포와 전선구조 분석을 바탕으로 새만금 방조제 주변에 반시계방향의 연안수 순환을 제시할 수 있는데, 이는 방조제 내측에서 북방조제 미축조 구간으로 유출되는 하구 수와 남쪽 방조제 미축조 구간을 통하여 외해에서 유입하는 해수로 구성된다. 하지만 방조제 축조가 완성된 후에는 만경강과 동진강 담수 유출이 인위적이고 직접적으로 남방조제 외측으로 변경되기 때문에 방조제 주변 연안역 순환형태는 변화될 것이다.