• Title/Summary/Keyword: Low-Power Communication

Search Result 1,910, Processing Time 0.031 seconds

Design of a Low-Power MOS Monolithic Peak Detector (저전력 MOS 모놀리식 피크 감지기의 설계)

  • 박광민;백경호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.217-220
    • /
    • 2000
  • In this paper, A low-power MOS monolithic peak detector is presented. Designed for monolithic and low-power characteristics, this MOS peak detector can be integrated easily on the same chip as a module of large communication systems. The simulation results of this peak detector which was composed with four NMOSs and two capacitors show the power dissipation of 0.972㎽ and the good operations for 2㎓ operating pulse frequency. Therefore, it may be used as a functional block for various signal processing systems.

  • PDF

On-line Remote Diagnosis System for DC Bus Capacitor of Power Converters Using Zigbee Communication (Zigbee통신을 이용한 전력변환기기의 DC Bus 커패시터의 온라인 원격 고장진단 시스템)

  • Chung, Wan-Sup;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • DC bus electrolytic capacitors are used in variety of equipments as smoothing element of the power converters because it has high capacitance for its size and low price. It is responsible for frequent breakdowns of many static converters and inverter drive systems. Therefore it is important to diagnosis monitoring the condition of an electrolytic capacitor in real-time to predict the failure of power converter. In this paper, the on-line remote diagnosis monitoring system for DC BUS electrolytic capacitors of power converter using low-cost type Zigbee communication modules is developed. To estimate the health status of the capacitor, the equivalent series resistor(ESR) of the component has to be determined. The capacitor ESR is estimated by using RMS computation using AC coupling method of DC link ripple voltage/current. The Zigbee communication-based experimental results show that the proposed remote DC capacitor diagnosis monitoring system can be applied to DC/DC converter and UPS successfully.

A Study on a Low Power Underwater Communication Modem for Implementation of Underwater Sensor Networks (수중 센서 네트워크를 위한 저전력 수중 통신 모뎀 연구)

  • Choi, Yong-Woo;Hwang, Jun Hyeok;Park, Dong Chan;Kim, Suk Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.268-273
    • /
    • 2015
  • Recently many countries are researching actively underwater sensor networks for securing ocean resources and changes of ocean environment in all over the world. Current the commercial modem are not suitable because it has characteristics of long distance, higher price, larger power consumption with the special object mainly. In this paper, a low power and compact underwater communication modem which is suitable for underwater sensor networks is implemented. It is comprised by using a simple analog circuit for non-coherent BFSK modulation method, ultra low power MCU and orthogonal codes with a less operation and a simple implementation. It was experimented an underwater communication using our modem in a water tank and open sea farms. It communicates fewer than $10^{-4}$ bit error rate.

A Wide Output Range, High Power Efficiency Reconfigurable Charge Pump in 0.18 mm BCD process

  • Park, Hyung-Gu;Jang, Jeong-A;Cho, Sung Hun;Lee, Juri;Kim, Sang-Yun;Tiwari, Honey Durga;Pu, Young Gun;Hwang, Keum Cheol;Yang, Youngoo;Lee, Kang-Yoon;Seo, Munkyo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.777-788
    • /
    • 2014
  • This paper presents a wide output range, high power efficiency reconfigurable charge pump for driving touch panels with the high resistances. The charge pump is composed of 4-stages and its configuration automatically changes based on the required output voltage level. In order to keep the power efficiency over the wide output voltage range, internal blocks are automatically activated or deactivated by the clock driver in the reconfigurable charge pump minimizing the switching power loss due to the On and Off operations of MOSFET. In addition, the leakage current paths in each mode are blocked to compensate for the variation of power efficiency with respect to the wide output voltage range. This chip is fabricated using $0.18{\mu}m$ BCD process with high power MOSFET options, and the die area is $1870{\mu}m{\times}1430{\mu}m$. The power consumption of the charge pump itself is 79.13 mW when the output power is 415.45 mW at the high voltage mode, while it is 20.097 mW when the output power is 89.903 mW at the low voltage mode. The measured maximum power efficiency is 84.01 %, when the output voltage is from 7.43 V to 12.23 V.

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

A High Current Efficiency CMOS LDO Regulator with Low Power Consumption and Small Output Voltage Variation

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Kang, Ji-Hun;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • In this paper we present an LDO based on an error amplifier. The designed error amplifier has a gain of 89.93dB at low frequencies. This amplifier's Bandwidth is 50.8MHz and its phase margin is $59.2^{\circ}C$. Also we proposed a BGR. This BGR has a low output variation with temperature and its PSRR at 1 KHz is -71.5dB. For a temperature variation from $-40^{\circ}C$ to $125^{\circ}C$ we have just 9.4mV variation in 3.3V LDO output. Also it is stable for a wide range of output load currents [0-200mA] and a $1{\mu}F$ output capacitor and its line regulation and especially load regulation is very small comparing other papers. The PSRR of proposed LDO is -61.16dB at 1 KHz. Also we designed it for several output voltages by using a ladder of resistors, transmission gates and a decoder. Low power consumption is the other superiority of this LDO which is just 1.55mW in full load. The circuit was designed in $0.35{\mu}m$ CMOS process.

A Low-Power 1 Ms/s 12-bit Two Step Resistor String Type DAC in 0.18 ㎛ CMOS Process (0.18 ㎛ CMOS 공정을 이용한 저 전력 1 Ms/s 12-bit 2 단계 저항 열 방식 DAC)

  • Yoo, MyungSeob;Park, HyungGu;Kim, HongJim;Lee, DongSoo;Lee, SungHo;Lee, KangYoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.67-74
    • /
    • 2013
  • A low-power 12-bit resistor string DAC for wireless sensor applications is presented. Two-step approach reduces complexity, minimizes power consumption and area, and increases speed. This chip is fabricated in 0.18-${\mu}m$ CMOS and the die area is $0.76mm{\times}0.56mm$. The measured power consumption is 1.8mW from the supply voltage of 1.8V. Measured SFDR(Spurious-Free Dynamic Range) is 70dB when the sampling frequency is less than 1 MHz.

Mutual Authentication Protocol Using a Low Power in the Ubiquitous Computing Environment

  • Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.91-94
    • /
    • 2004
  • Ubiquitous sensor network is to manage and collect information autonomously by communicating user around device. Security requirements in Ubiquitous based on sensor network are as follows: a location of sensor, a restriction of performance by low electric power, communication by broadcasting, etc. We propose new mutual authentication protocol using a low power of sensor node. This protocol solved a low power problem by reducing calculation overload of sensor node using two steps, RM(Register Manager) and AM(Authentication Manager). Many operations performing the sensor node itself have a big overload in low power node. Our protocol reduces the operation number from sensor node. Also it is mutual authentication protocol in Ubiquitous network, which satisfies mutual authentication, session key establishment, user and device authentication, MITM attack, confidentiality, integrity, and is safe the security enemy with solving low electric power problem.

  • PDF

Multiple Brillouin Stokes Generation Utilizing a Linear Cavity Erbium-Doped Fiber Laser

  • AL-Mansoori, Mohammed Haydar;Noordin, Nor Kamariah;Saripan, M. Iqbal;Mahdi, Mohd Adzir
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • This paper reports the design of a multiwavelength fiber laser source that utilizes a linear cavity of hybrid Brillouin/Erbium fiber laser (BEFL). The output power, threshold power and free running cavity modes were investigated against the pump powers. The structure exhibited low threshold operation of 4 mW at 2.3 mW injected Brillouin pump power. The optimization of Brillouin pump wavelength, power and Erbium gain led to a maximum possible number of channels generated. Simultaneous and stable operation of 21 channels with 10.88 GHz channels spacing were obtained from this architecture at 1 mW injected Brillouin pump power and 90 m W Erbium doped fiber pump power in the 1555 nm region.

Low-Power-Consumption Repetitive Wake-up Scheme for IoT Systems (사물인터넷 시스템을 위한 저전력 반복 깨우기 기법)

  • Kang, Kai;Kim, Jinchun;Eun, Seongbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1596-1602
    • /
    • 2021
  • Battery-operated IoT devices in IoT systems require low power consumption. In general, IoT devices enter a sleep state synchronously to reduce power consumption. A problem arises when an IoT device has to handle asynchronous user requests, as the duty cycle must be reduced to enhance response time. In this paper, we propose a new low-power-consumption scheme, called Repetitive Wake-up scheme for IoT systems of asynchronous environments such as indoor lights control. The proposed scheme can reduce power consumption by sending wake-up signals from the smartphone repetitively and by retaining the IoT device in sleep state to the smallest possible duty cycle. In the various environments with IoT devices at home or office space, we showed that the proposed scheme can reduce power consumption by up to five times compared to the existing synchronous interlocking technique.