• Title/Summary/Keyword: Low-NOx combustor

Search Result 100, Processing Time 0.02 seconds

Observation of flame oscillation with changing combustor pressure (연소실 압력변동에 따른 화염 진동현상의 관찰)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-280
    • /
    • 2005
  • At previous study, nitrogen oxide emission was decreased with decreasing pressure index. This tendency was explained by the flame oscillation with changing combustor pressure. In this study, the characteristics of flame oscillation with changing combustor pressure were investigated. It can be found that flame length is extended and flame width is narrowed by decreasing combustor pressure. It can be observed that pilot flame and the surrounding air converge on the inner flame in the $P^{\ast}{\geqq}1$ conditions and that surrounding air and flow pattern was widely dispersed in the $P^{\ast}<1$ conditions. In the respect of average flame length, low fluctuation was shown in the $P^{\ast}<1$ conditions. On the other hands, large fluctuation was shown in the $P^{\ast}<1$ conditions. Flame oscillation are observed from $P^{\ast}=$ 0.98 in the condition of $P^{\ast}<1$ and the amplitude of flame oscillation becomes larger when $P^{\ast}$ is lowered. These results demonstrate that low NOx phenomenon was caused by flame oscillation with changing combustor pressure.

  • PDF

NOx Production Characteristics of Offset-Opposed Impinging Jet Flame (Offset-대향 분출혐의 NOx 생성특징)

  • Seo, Jong-Won;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.1-9
    • /
    • 1999
  • The NOx production and combustion characteristics are experimentally compared with an offset with counter-orifice configuration. The offset-opposed impinging flame creates stronger vortex around the stagnation point than the opposed flame. The thermal and mass mixtures be improved and the delay of turbulence dissipation be occurred by the strong vortex. In result, the turbulent flame structure transferred from the wrinkled flame and the corrugated flame to the distributed reaction flame. It was found that the offset-opposed impinging flame decreased more NOx and improved the combustion efficiency than the opposed flame. The principal objective of this study is to develop the low NOx combustor by distributed reaction flame.

  • PDF

Effect of Mixture Flow Rate on Emission Characteristics of Laminar Premixed CH4/Air Flame with Changing Combustor Pressure

  • Ma, Hai-quan;Song, Jae-hyeok;Kang, Ki-joong;Choi, Gyung-min;Kim, Duck-jool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.269-271
    • /
    • 2012
  • To investigate emission characteristics of laminar premixed CH4/air flame, combustion experiments were conducted at three flow rates (5.3L/min, 10.6L/min, 15.5L/min) with changing the combustor pressure(-30Kpa-30Kpa). It was found that with increasing flow rate, NOx emission increased in high pressure condition, while decreased in low pressure condition; and the emission of CO decreased with increasing flow rate. For the influence of pressure, emission of NOx increased with increasing pressure regardless of flow rates, while CO emission decreased on the contrary.

  • PDF

A Review of Development for DHI's Industrial Gas Turbine Combustor (2) (두산중공업 발전용 가스터빈 연소기 개발 현황 (2))

  • Lee, Donghun;Lee, Sangeon;Chon, Muhwan;Nam, Samsik;Lee, Kwangyeol
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.269-269
    • /
    • 2015
  • 두산중공업이 국책과제로 개발 중인 한국형 대형 가스터빈의 연소기 개발현황 및 결과에 대해 기술하였다. 압력손실 5%, 연소효율 99.9%, 15ppm NOx 배출 성능을 가지는 14개의 캔형 연소기로 구성되었으며, 40% turn down ratio 운전, WI ${\pm}7%$의 fuel flexibility 성능 및 dual fuel 적용 가능한 운전 성능 목표를 가진다. 이를 위해 Dry Low NOx 형 연소기를 개발, 단일 노즐 연소시험을 수행 중이며, 2016년 상반기 중 상압연소리그시험을 거쳐 그 성능을 검증하고자 한다.

  • PDF

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor (희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측)

  • Yi, Jae-Bok;Jeong, Dae-Ro;Huh, Kang-Yul;Jin, Jae-Min;Park, Jung-Kyu;Lee, Min-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1257-1264
    • /
    • 2011
  • This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor (저선회 모델 연소기의 연소특성 및 선회각도 영향)

  • Jeong, Hwanghui;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.40-49
    • /
    • 2016
  • This study aims to confirm the characteristics of low swirl combustion at our low swirl model combustor. To do it, it is experimentally conducted by evaluating the flame shape, stability region and emissions according to the swirl angle. The most significant feature of low swirl combustion is a occurrence of lifted flame. Such lifted flames happen to combine exquisitely propagating feature of premixed flame with diverging flow. This feature of lifted flame was confirmed through a velocity flow field and visualized the flame in this model combustor. The visualized flame was classified according to the thermal power and equivalence ratio. The variation study in swirl angles showed that the lean flammable limit could be extended only by swirl angles. Also, as the swirl angle increased, it was confirmed that the NOx and CO emissions were decreased due to the mixing enhancement and shorter resident time.

Experimental Study on Combustion Performances with Variations in Main Air-ratio and Dilution hole-pattern (주연소 영역 공기배분 및 희석공기공 배치에 따른 연소 성능 변화 연구)

  • Kim, Minkuk;Kim, Hanseok;Jung, Seungchai;Park, Heeho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.254-257
    • /
    • 2017
  • As a part of the development of aircraft gas turbines, combustion performance tests have been conducted in the single combustor sector. The effects of change in the amount of air supplied to the main combustion zone to the performance of the combustor, such as a pollutant emission, a liner temperature distribution and an exit temperature patterns, were studied. Emissions of CO and NOx increased with the main air-ratio and exit temperature pattern was improved. When changing the pattern of the dilution holes, it was shown that the temperature patterns on the exit plane of the combustor and the surface of liner changed depending on the main flame structure and mixing with diluent air. These observations will be applied to combustor liner designs to improve combustor durability and emissions reduction performance.

  • PDF

Dissipation and Control of Flow Instability in a Rectangular Swirl Combustor using Cooling Flow Injection (사각 스월 연소기에서 냉각 유동을 이용한 연소기 내 유동 불안정 감쇠 및 조종)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.236-241
    • /
    • 2009
  • To identify turbulent flow characteristics of non-reacting case resulted from cooling flow injection in a rectangular swirl combustor, 3D Large Eddy Simulation(LES) was implemented and Proper Orthogonal Decomposition(POD) analysis was used for post-processing. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. It was observed that increase in speed of shear layer resulted from the inflow of cooling flow caused intensified vorticity magnitude in central toroidal recirculation zone. In the case of vorticity magnitude in corner recirculation zone, however, was weakened. In addition, pressure fluctuation in combustor was damped down and longitudinal acoustic mode was significantly dissipated

  • PDF