• Title/Summary/Keyword: Low-Inertia

Search Result 222, Processing Time 0.029 seconds

A Simple Method for Identifying Mechanical Parameters Based on Integral Calculation

  • Han, Sang-Heon;Yoo, Anno;Yoon, Sang Won;Yoon, Young-Doo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1387-1395
    • /
    • 2016
  • A method for the identification of mechanical parameters based on integral calculation is presented. Both the moment of inertia and the friction constant are identified by the method developed here, which is based on well-known mechanical differential equations. The mechanical system under test is excited according to a pre-determined low-frequency sinusoidal motion, minimizing the distortion, and increasing the accuracy of the results. The parameters are identified using integral calculation, increasing the robustness of the results against measurement noise. Experimental data are supported by simulation, confirming the effectiveness of the proposed technique. The performance improvements shown here are of use in the design of speed and position controllers and observers. Owing to its simplicity, this method can be readily applied to commercial inverter products.

A Study on Electrical-Inertia System For Traction System (추진장치 시험을 위한 전기적 관성 부하 구현에 관한 연구)

  • Kim, Gil-Dong;Han, Young-Jae;Park, Hyun-Jun;Jho, Jeong-Min;Jang, Dong-Uook;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1079-1081
    • /
    • 2001
  • A propulsion system apparatus is needed for a railroad vehicle to test and estimate propulsion performance. The electrical inertia simulator to facilitate the development and testing of propulsion systems, is presented in this paper. It is based on a vector-controlled induction motor drive supplied from the AC mains through a double PWM converter that provides desirable features such as bi-directional power flow, nearly unity power factor and low harmonic factor at the AC mains. A theoretical analysis is first presented, followed by a detailed simulation study to assess the overall system performance under dynamic conditions.

  • PDF

Use of Stored Energy in Rotor Inertia for LVRT of PMSG Wind turbine based on Sliding Mode Control (영구자석 동기발전기 시스템을 위한 회전자 관성에너지를 이용한 Sliding Mode제어 기반 LVRT 제어)

  • Jeong, Daeheon;Gui, Yonghao;Kim, Chunghun;Chung, Chung Choo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1058-1059
    • /
    • 2015
  • This paper describes a low-voltage ride-through method for the permanent magnet synchronous generator (PMSG) wind turbine system at a grid fault. The generator side converter regulates the DC link voltage instead of the grid side converter by storing the surplus active power in the rotor inertia during grid fault by the sliding mode controller. The grid side converter controls the grid active power keeping a maximum power point tracking. Simulation results for small scale PMSG wind turbine verify the efficiency of the control method.

  • PDF

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Low-Frequency Pressure Fluctuations in an External-Loop Airlift Reactor (외부순환 공기부양반응기에서 낮은 주파수의 압력 변동)

  • Choi, Keun Ho
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.665-674
    • /
    • 2020
  • Low-frequency pressure fluctuations in an external-loop airlift reactor were investigated. Low-frequency pressure fluctuations could be measured by shooting videos about liquid levels in the four piezometric tubes which were installed at the lower and upper parts of the riser and downcomer using a cellular phone. The periodic characteristics of pressure fluctuations were proved by the calculation of their auto-correlation function and cross-correlation function. Even if the riser superficial gas velocity was constant, the riser and downcomer gas holdups as well as wall pressures were periodically changed due to the inertia of circulating liquid. In general, the intensity of pressure fluctuations increased with an increase in the gas velocity. When the unaerated liquid height was 0.04 m, the maximum period of pressure fluctuations was found at the specific gas velocity (0.14 ms-1). It was because the maximum inertia of circulating liquid resulted from a reduction in the increasing rate of the liquid circulation velocity and a decrease in the volume of the effectively circulating liquid with an increase in the gas velocity.

Control of Single-Phase Flux-Reversal Machine Drives for High-Speed Applications (고속 구동용 단상 FRM(Flux-Reversal Machine)의 제어 특성에 관한 연구)

  • Jang Jae-Wan;Kim Myung-Jin;Jang Ki-Bong;Soh Jong-Suk;Lee Ju
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.866-868
    • /
    • 2004
  • The flux-reversal machine(FRM) is a new brushless doubly-salient permanent-magnet machine combining the advantages of the switched-reluctance machine(SRM) and the permanent-magnet machine(PMM) into one machine. FRM has a naturally low inductance, therefore, a low electrical time constant. This feature, combined with its simple construction and low rotor inertia appear to make the FRM attractive as a low-cost high-speed machine. For high-speed applications, two alternative commutation strategies are studied, one using the phase commutation advancing technique and another using the conducting pulse-width control. This paper describes the techniques and reports the corresponding simulated and experimented performance

  • PDF

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

Analyses on Aerodynamic and Inertial Loads of an Airborne Pod of High Performance Fighter Jet (고기동 항공기 하부 장착 파드의 공력 및 관성하중 분석 연구)

  • Lee, Jaein;Shin, Jinyoung;Cho, Donghyun;Jung, Hyeongsuk;Choi, Taekyu;Lee, Jonghoon;Kim, Youngho;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • A fighter performing a reconnaissance mission is equipped with a pod that drives optical/infrared sensors for acquiring and identifying target information on the lower part of the fuselage. Due to the nature of the reconnaissance mission, the fighter performs high speed evasive maneuvers, and the resulting load should be considered importantly for the development of the pod. This paper concerns a numerical investigation into the inertial and aerodynamic loads of the airborne pod of high performance aircrafts. For the aerodynamic load analysis, the pylon and pod shapes are added to the fighter 3D model, and the commercial software was used for static and dynamic analysis. Considering the practical mission conditions, the common/extreme conditions were established respectively in the static and dynamic situations of pods and the driving torque could be tripled under dynamic conditions. In the analysis of inertia load, a 3-DOF model considering roll and turning maneuvers was derived by the Lagrangian method, and then the numerical integration method was applied to the analysis. As a results, it was conformed that the inertia load was generally induced at a low level compared to the aerodynamic load, but depending on the unbalance mass condition of the pod, the inertia load cannot be negligible.

Sensorless speed control of switched reluctance motor using phase current detection and dwell angle control (상전류 검출 및 도통각 조정을 이용한 SRM 센서리스 속도제어)

  • 신규재;권영안
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.955-957
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia, and high poer rate per unit volume. However, position sensor isessential in SRM in order to synchronize the phase excitation to the rotor position. The position sensors increase the cost of drive system, and tend to reduce system reliability. This paper investigtes the speed control of sensorless SRM. The proposed system consists of position detection circuit, dwell angle controller, digital logic commutator, PI speed controller and 4-phase inverter. The performances in the proposed system are verified through the experiment.

  • PDF

Speed Control of Switched Reluctance Motor Using the One Chip Micoro-Computer (원칩 마이컴을 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 신규재
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.222-224
    • /
    • 2000
  • This Paper investigates the speed control of Switched reluctance motor(SRM) using one chip microcomputer The SRM has the advantages of simple structure low rotor inertia. and high efficiency. The Position sensor is essential in SRM in order to synchronize the Phase excitation to the rotor position. The proposed system consists of phase locked loop controller, switching angle controller and inverter. The Performances in the Proposed system are verified through the experiment.

  • PDF