• Title/Summary/Keyword: Low-Energy Photon

Search Result 127, Processing Time 0.024 seconds

Measurement of Photo-Neutron Dose from an 18-MV Medical Linac Using a Foil Activation Method in View of Radiation Protection of Patients

  • Yucel, Haluk;Cobanbas, Ibrahim;Kolbasi, Asuman;Yuksel, Alptug Ozer;Kaya, Vildan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.525-532
    • /
    • 2016
  • High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be $(1.17{\pm}0.06){\times}10^7n/cm^2$ per Gy at the phantom surface in a $20{\times}20cm^2$ X-ray field size. The maximum photo-neutron dose was measured to be $0.67{\pm}0.04$ mSv/Gy at $d_{max}=5cm$ depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of $10{\times}10cm^2$, $15{\times}15cm^2$, and $20{\times}20cm^2$ from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment.

Analytical-numerical formula for estimating the characteristics of a cylindrical NaI(Tl) gamma-ray detector with a side-through hole

  • Thabet, Abouzeid A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3795-3802
    • /
    • 2022
  • NaI(Tl) scintillation materials are considered to be one of many materials that are used exclusively for γ-ray detection and spectroscopy. The gamma-ray spectrometer is not an easy-to-use device, and the accuracy of the numerical values must be carefully checked based on the rules of the calibration technique. Therefore, accurate information about the detection system and its effectiveness is of greater importance. The purpose of this study is to estimate, using an analytical-numerical formula (ANF), the purely geometric solid angle, geometric efficiency, and total efficiency of a cylindrical NaI(Tl) γ-ray detector with a side-through hole. This type of detector is ideal for scanning fuel rods and pipelines, as well as for performing radio-immunoassays. The study included the calculation of the complex solid angle, in combination with the use of various points like gamma sources, located axially and non-axially inside the through detector side hole, which can be applied in a hypothetical method for calibrating the facility. An extended γ-ray energy range, the detector, source dimensions, "source-to-detector" geometry inside the side-through hole, path lengths of γ-quanta photons crossing the facility, besides the photon average path length inside the detector medium itself, were studied and considered. This study is very important for an expanded future article where the radioactive point source can be replaced by a volume source located inside the side-trough hole of the detector, or by a radioactive pipeline passing through the well. The results provide a good and useful approach to a new generation of detectors that can be used for low-level radiation that needs to be measured efficiently.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.

The Enhancement of Skin Sparing by Tray Materials for High Energy Photon Beam (고에너지 광자선치료에서 고정판 흡수물질을 이용한 피부보호효과의 향상)

  • Chu, Sung-Sil;Lee, Chang-Geol;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 1993
  • The skin sparing effect associated with high energy x-ray or gamma ray beams may be reduce or lost under certain conditions of treatment. Current trends in using large fields. Shield carrying trays, compensating filters, and isocentric methods of treatment have posed problems of increased skin dose which sometimes become a limiting factor in giving adquate tumor doses. We used the shallow ion chamber to measure the phantom surface dose and the physical treatment variables for Co-60 gamma ray, 4MV and 10 MV x-ray beam. The dependence of percent surface dose on field sizes, atomic number of the shielding tray materials and its distance from the surface for 4, 10MV x-rays and Co-60 gamma ray is qualitatively similar. The use of 2 mm thick tin filter is recommended for situations where a low atomic number tray is introduced into the beam at distances less than 15 cm from the surface and with the large field sized for 4 MV x-ray beam. In case of Co-60 gamma ray, the lead glass tray is suitable for enhancement of skin sparing. Also, the filter distance should be as large as possible to achieve substantial skin sparing.

  • PDF

On the Crystal Growth of Gap by Synthesis Solute Diffusion Method and Electroluminescence Properties. (합성용질확산법에 의한 GaP결정의 성장과 전기루미네센스 특성)

  • Kim, Seon-Tae;Mun, Dong-Chan
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.121-130
    • /
    • 1993
  • The GaP crystals were grown by synthesis solute diffusion method and its properties were investigated. High quality single crystals were obtained by pull-down the crystal growing ampoule with velocity of 1.75mm/day. Etch pits density along vertical direction of ingot was increased from 3.8 ${\times}{10^4}$c$m^{-2}$ of the first freeze to 2.3 ${\times}{10^5}$c$m^2$ of the last freeze part. The carrier concentration and mobilities at room temperature were measured to 197.49cc$m^2$/V.sec and 6.75 ${\times}{10^{15}}$c$m^{-3]$, respectively. The temperature dependence of optical energy gap was empirically fitted to $E_g$(T)=[2.3383-(6.082${\times}{10^{-4}}$)$T^2$/(373. 096+TJeV. Photoluminescence spectra measured at low temperature were consist with sharp line-spectra near band-gap energy due to bound-exciton and phonon participation in band edge recombination process. Zn-diffusion depth in GaP was increased with square root of diffusion time and temperature dependence of diffusion coefficient was D(Tl = 3.2 ${\times}{10^3}$exp( - 3.486/$k_{\theta}$T)c$m^2$/sec. Electroluminescence spectra of p-n GaP homojunction diode are consisted with emission at 630nm due to recombination of donor in Zn-O complex center with shallow acceptors and near band edge emission at 550nm. Photon emission at current injection level of lower than 100m A was due to the band-filling mechanism.

  • PDF

Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology (3D 프린팅 기술을 이용한 원료에 대한 방사선 차폐능 평가: FDM 방식의 3D 프린팅 기술을 중심으로)

  • Lee, Hongyeon;Kim, Donghyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.909-917
    • /
    • 2018
  • 3D printing technology is expected to be an innovative technology of the manufacturing industry during the 4th industrial revolution, and it is being used in various fields including biotechnology and medical field. In this study, we verified the printing materials through Monte Carlo simulation to evaluate the radiation shielding ability of the raw material using this 3D printing technology. In this paper, the printing materials were selected from the raw materials available in a general-purpose FDM-based 3D printer. Simulation of the ICRU phantom and the shielding system was carried out to evaluate the shielding effect by evaluating the particle fluence according to the type and energy of radiation. As a result, the shielding effect tended to decrease gradually with increasing energy in the case of photon beam, and the shielding effect of TPU, PLA, PVA, Nylon and ABS gradually decreased in order of materials. In the case of the neutron beam, the neutron intensity increases at a low thickness of 5 ~ 10 mm. However, the effective shielding effect is shown above a certain thickness. The shielding effect of printing material is gradually increased in the order of Nylon, PVA, ABS, PLA and TPU Respectively.

A Study on the Dose Assessment Methodology Using the Probabilistic Characteristics of TL Element Response (확률분포 특성을 이용한 열형광선량계의 선량평가방법에 관한 연구)

  • Cho, Dae-Hyung;Oh, Jang-Jin;Han, Seung-Jae;Na, Seong-Ho;Hwang, Won-Guk;Lee, Won-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.123-138
    • /
    • 1998
  • Characteristics of element responses of Panasonic UD802 personnel dosimeters in the X, ${\beta}$, ${\gamma}$, ${\gamma}/X$, ${\gamma}/{\beta}$ and ${\gamma}$/neutron mixed fields were assessed. A dose-response algorithm has been developed to decide the high probability of a radiation type and energy by using the distribution in all six ratios of the multi-element TLD. To calculate the 4-element response factors and ratios between the elements of the Panasonic TLDs in the X, $\beta$, and $\gamma$ radiation fields, Panasonic’s UD802 TLDs were irradiated with KINS’s reference irradiation facility. In the photon radiation field, this study confirms that element-3 (E3) and element-4 (E4) of the Panasonic TLDs show energy dependent both in low- and intermediate-energy range, while element-1 (E1) and element-2 (E2) show little energy dependency in the entire whole range. The algorithm, which was developed in this study, was applied to the Panasonic personnel dosimetry system with UD716AGL reader and UD802 TLDs. Performance tests of the algorithm developed was conducted according to the standards and criteria recommended in the ANSI N13.11. The sum of biases and standard deviations was less than 0.232. The values of biases and standard deviations are distributed within a triangle of a lateral value of 0.3 in the ordinate and abscissa, With the above algorithm, Panasonic TLDs satisfactorily perform optimum dose assessment even under an abnormal response of the TLD elements to the energy imparted. This algorithm can be applied to a more rigorous dose assessment by distinguishing an unexpected dose from the planned dose for the most practical purposes, and is useful in conducting an effective personnel dose control program.

  • PDF

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam (6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구)

  • Lee, Seung Hoon;Kwak, Keun Tak;Park, Ju Kyeong;Gim, Yang Soo;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

  • PDF

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF

Reduction of Electron Contamination in Photon Beam by electron Filter in 6MV Linear Accelerator (6MV 선형가속기에서 Al/Cu에 관한 여과판 사용시 전자오염 감소에 관한 연구)

  • Lee, Cheol-Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.41-54
    • /
    • 1996
  • The secondary electrons developed by interaction between primary beam and a tray mounted for blocks in Megavoltage irradiation result in excess soft radiation dose to the surface layer. To reduce this electron contamination, electron filters have been used to be attached under a tray. Various filters with Cu and Al plates in six different thickness and Cu/Al combined plates in 3 different thickness were tested to measure the reduction rate of secondary electron contamination to the surface layer. The measurement to find optimal filter was performed on 6MV linear accelerator in $10 cm{\times}10 cm$ field size and fixed 78.5cm source to measurement points distance from surface to maximum build up point in 2mm intervals. The result was analyzed as the ratio of measured doses with using filters, to standard doses of measured open beam. The result of this study was fellowing : 1. The contaminated low energy radiation were mainly produced by blocking tray. 2. The surface absorbed dose was slowly increased by increasing irradiation field size but rapidly increased at field size above $15cm{\times}15cm$. 3. Al plate upto 2.5mm thickness used as a filter was found to be inadequate due to the failure of reduction of the surface absorbed dose below doses of the under surface upto the maximal build up. Cu 0.5mm plate and Cu 0.28mm/A1 1.5mm compound plate were found to be optimal filters. 4. By using these 2 filters, the absorbed dose to the surface were effectively reduced $5.5\%$ in field size $4cm{\times}4cm,\;11.3\%$ in field size $10cm{\times}10cm,\;22.3\%$ in field size $25cm{\times}25cm$. 5. In field size $10cm{\times}10cm$, the absorbed dose to the surface of irradiation was reduced by setting TSD 20cm at least,. but effective and enough dose reduction could be achieved by setting TSD 30cm as 2 optimal filters used. 6. More surface dose absorbed at TSD less than 7.4cm with a tray and filters together indicated that soft radiation was also developed by filters. 7. The variation of PDD by the different size of irradiation field was minimal as 2 optimal filters used. There was also not different in variation of PDD according to using any of two different filters. 8. PDD was not effected either by various TSD or by using the different filter among two.

  • PDF