• Title/Summary/Keyword: Low-Carbon City

Search Result 105, Processing Time 0.025 seconds

The Investigation of Problems for Next Generation Energy System during Existing Urban Plan Stage (기존 도시계획 단계에서 차세대에너지시스템 적용시 문제점 검토)

  • Park, Jin-Young;Kim, Sam-Uel;Park, Yool;Lee, Sang-Jin;Lee, Jurng-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.190-195
    • /
    • 2009
  • Since the industrial revolution, the global environmental problems such as greenhouse gas accumulation and the average temperature increase have caused people's attention. 'Low Carbon, Green Growth' was presented to cope with these global concerns, as one of main policies of 2008 in Korea. The paradigm of a green urban development is started to concern the whole city's energy problems owing to realize 'Low Carbon, Green Growth' in the urban side. The government established a nation's basic energy plan for 20 years, and some local cities made efforts to develop new renewable energy such as the solar, wind and water energy which are suitable to each city's character. As a part of these efforts, the concept of U-Eco city is newly appeared to reflect upon ubiquitous technique, urban ecology and the next generation energy system. However, urban plan is difficult to adopt this next generation energy system with existing laws, regulations and technical systems. The new executive and systematic system is needed to realize the U-Eco city U-Eco for the management of an efficient city. In this study, the authors investigate the concept of the next generation energy system and U-Eco city to realize the energy-efficient city plan and analyze problems to occur during the application of them in an existing city plan. Then, the authors show the remedies to deal with occurred problems.

  • PDF

An Empirical Analysis on Correlation between Carbon Emission and Urban Spatial Structure (도시공간구조와 탄소배출량간 상관관계 실증 분석)

  • Ryu, Yoon-Jin;Sohn, Se-Hyoung;Kim, Do-Nyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.273-281
    • /
    • 2012
  • The government is carrying forward a sustainable development which reduces green-house gas and environmental pollution by preparing 'Low Carbon Green Development' policy basis as a new paradigm of national development. This study aims to understand the status of atmosphere contamination which Seoul has by finding correlation among social, economical indexes and carbon, the humanities and social characteristic materials which best express types of city and correlation and to suggest implications. According to the results of the analysis, first the carbon emission volume of Seoul recorded 0.56 ppm, Jongno, Jung-Gu, Kuro, Kangnam and Songpa were more than the average of Seoul and Kwangjin-Gu & Kangbuk-Gu, relative north east regions, Yeongdeungpo-Gu and Dongjak-Gu, south west regions showed lower CO occurrences. Second, according to the correlation and factor analysis, elements which affect CO emission volume of Seoul are largely represented by regional level, traffic level and development density level. Third, when the importance of influence factors based on the analyzed standard coefficient by a regression model, traffic and development density level were most important by recording traffic level (0.967), environmental level (0.385), regional level (0.530) and development density (0.561). Consequently, it was revealed that the traffic level most affected CO emission.

Carbon Storage Estimation of Urban Area Using KOMPSAT-2 Imagery (KOMPSAT-2호 위성영상을 이용한 도시지역 탄소저장량 추정)

  • Kim, Ki-Tae;Cho, Jin-Woo;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • Recently Korean government announced the vision for low-carbon green growth. Quantifying of the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. In the city planning the carbon storage estimation has become an important factor. In this paper, KOMPSAT-2 satellite imagery was used to develop a method to predict the urban forest carbon storage from the Normalized Difference Vegetation Index (NDVI) computed from a time sequence image data. The total carbon storage change by trees in the 6 administrative zonings of Jinju was estimated using the image data in 2007 and 2009. Therefore the paper presents a method based on the satellite images, which can estimate the spread of urban tree and carbon storage variation using KOMPSAT-2.

Relationship Between Exothermic Heat and Carbon Contents of Pitch-based Carbon Fiber

  • Lee, Jae-Young;Oh, Jong-Hyun;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.202-207
    • /
    • 2009
  • Pitch-based carbon fiber tows were prepared from naphtha cracking bottom oil by reforming and carbonization. The relationship between exothermic heat and carbon contents of the fiber was investigated by changing the carbonization conditions. The carbon contents and the crystallinities of isotropic pitch-based carbon fibers were 86.8~93.8 wt% and 33.7~40.1%, respectively, which were linearly proportional to the increase of carbonization temperature from 700 to $1000^{\circ}C$. The exothermic heat (temperature increase) of fiber tows was measured in a short time, which was also linearly proportional to the increase of carbon contents due to the increase of crystallinity, even though the crystallinity was low. Therefore, the carbon contents or carbonization degree of fibers can rapidly and indirectly be estimated by measuring the surface temperature increase of fibers.

A Study on the Low-carbon Urban Regeneration Planning Elements and System in Climate Change Era. (기후변화대응 탄소저감형 도시재생 계획 요소 및 체계에 관한 연구)

  • Choi, Joung-eun;Choi, Joon-Sung;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6345-6359
    • /
    • 2015
  • This study aims to clarify the concept of 'Low-carbon urban regeneration', to extract planning elements according to it, and to establish the planning system. In order to extract the elements, matrix analysis was conducted between planning elements of urban regeneration and Low-carbon cities, and the focus group interview(FGI) was used. Derived elements from this process were restructured for the new planning system. In addition, in-depth case analysis was performed to verify the suitability and effects of planning elements and system. The result showed that planning element of Low-carbon urban regeneration can be sorted in 37 elements in 5 categories. In-depth analysis indicated that established planning elements were importantly dealt in cases and played a significant role in urban regeneration and carbon reduction. Also, it showed that those elements had a significant relationship with adaptation and mitigation, the two responding strategies to the climate change. Elements highly contributing to urban regeneration were Urban Structure, Transportation, Policy while elements affecting carbon reduction were Transportation, Green & Blue space, Energy & Material field.

A Study on the Application of District Heating System using Sewage Source (하수열원을 이용한 지역난방 적용성 검토)

  • Kim, Sang-Hun;Kim, Dong-Jin;Choi, Dong-Kyoo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.928-933
    • /
    • 2009
  • The purpose of this study is to examine the energy consumption, carbon dioxide emission & energy cost of district heating using sewage source. The annual TOE of heat pump using sewage source save 37.1 percent than city gas boiler. And annual carbon dioxide emission of heat pump cut down 41.3 percent than city gas boiler. If it charges the rate schedule for district heating to apartment resident, collected amount are 3,127,170 thousand won. As energy cost of heat pump & circulation pump are 1,378,072 thousand won. the profits are 1,749,098 thousand won. As payback period is 8.97years, applicability is low level. However, it has advantages in energy consumption, carbon dioxide emission & energy cost. Therefore, it needs to proceed through government assistance.

  • PDF

A Case Study on Development of Low-Carbon City against to the Climate Change : With a Focus on Pyeongtaek Sosabul-district CDM Project (기후변화에 대응한 저탄소 도시개발 사례분석 : 평택소사벌지구 CDM 사업을 중심으로)

  • Yun, Seong-Ho;Lee, Gyu-Hae;Park, Hojeong
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2012
  • This study analyzes United Nations Framework Convention on Climate Change and domestic-foreign support policy for renewable, also confirms the need for sound and sustainable development to minimize adverse impacts on the environment. Main source of greenhouse gas emissions leading to global warming needs to be resolved through the introduction of renewable energy system by developing low-carbon city. Case studies show the directions for practical response to climate change on the basis of introduction of renewable energy. This case studies can be served as the base model that reduces greenhouse gases with the introduction of renewable energy facilities in the new land development project and obtains economic benefits from CDM project.

Realization of Zero Waste Clean City to Low Carbon Green Growth (저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상)

  • Oh, Jeong-Ik;Ahn, Soo-Jeung;Kim, Jong-Yeob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.

Contribution of Phytoplankton and Zooplankton to Total Organic Carbon (TOC) in the Reservoir-river-Seonakdong River, Busan (서낙동강에서 동·식물플랑크톤의 총유기탄소 기여율 변동 분석)

  • Lee, You-Jung
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.691-702
    • /
    • 2020
  • Carbon biomass of plankton community, Total Organic Carbon (TOC) and Chlorophyll a (chl.a) concentration were examined in the SeoNakdong river from January to December in 2014, to assess composition of phyto- and zoo-plankton variation, to certify the correlation between chl.a and TOC and to determine the level of contribution of plankton carbon content to TOC in the reservoir-river ecosystem. The correlation level between TOC and chl.a was low in the year 2014 but exceptionally was highly correlated only during the period with cyanobacterial bloom. The high level of contribution of plankton carbon content to TOC was attributed to cyanobacterial carbon biomass from May to November and to Cladocera carbon biomass from March to May, November and December despite of its low abundance. These results suggest that there were inter-relationships between phytoplankton, zooplankton and TOC and also subtle consistency of their properties through the year. These patterns should be discussed in relation to the physiochemical and biological characteristics of the environment, as well as to allochthonous organic matters from non-point pollution sources.

Design of Smart City Considering Carbon Emissions under The Background of Industry 5.0

  • Fengjiao Zhou;Rui Ma;Mohamad Shaharudin bin Samsurijan;Xiaoqin Xie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.903-921
    • /
    • 2024
  • Industry 5.0 puts forward higher requirements for smart cities, including low-carbon, sustainable, and people-oriented, which pose challenges to the design of smart cities. In response to the above challenges, this study introduces the cyber-physical-social system (CPSS) and parallel system theory into the design of smart cities, and constructs a smart city framework based on parallel system theory. On this basis, in order to enhance the security of smart cities, a sustainable patrol subsystem for smart cities has been established. The intelligent patrol system uses a drone platform, and the trajectory planning of the drone is a key problem that needs to be solved. Therefore, a mathematical model was established that considers various objectives, including minimizing carbon emissions, minimizing noise impact, and maximizing coverage area, while also taking into account the flight performance constraints of drones. In addition, an improved metaheuristic algorithm based on ant colony optimization (ACO) algorithm was designed for trajectory planning of patrol drones. Finally, a digital environmental map was established based on real urban scenes and simulation experiments were conducted. The results show that compared with the other three metaheuristic algorithms, the algorithm designed in this study has the best performance.