• Title/Summary/Keyword: Low wave number

Search Result 207, Processing Time 0.027 seconds

Low Rayleigh Number Thermal Convection Between Two Horizontal Plates with Sinusoidal Temperature Distributions (정현적인 온도 분포를 갖는 두 수평 평판 사이에서의 작은 Rayleigh 수 열 대류)

  • 유주식;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 2001
  • Low Rayleigh number thermal convection in a fluid layer confined between two-infinite horizontal walls kept at spatially sinusoidal temperature distributions, T_L=T_m+\Delta T\sin \kappax,\;T_U=T_m+\Delta T\sin(\kappax-\beta)$, is theoretically investigated by a regular perturbation expansion method. For small wave numbers, an upright cell is formed between the two walls at $\beta$=0. The cell is tilted, as the phase difference increases, and a flow with tow counter-rotating eddies occurs at $\beta=\pi$. when the wave number is large, isolated eddies are formed near the lower and upper walls, for all the phase differences. There exists a wave number at which maximum heat transfer rate at the walls occurs, at each of the phase differences. And the wave number increases with increase of the phase difference. for a fixed wave number, the heat transfer rate decrease with increase of the phase difference.

  • PDF

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer (축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성)

  • 신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in an Axial Turbulent Boundary Layer with Transverse Curvature

  • Shin, Dong-Shin;Lee, Seung-Bae;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1682-1691
    • /
    • 2005
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the rms value is largest for the stream wise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure, and in span wise correlation for both shear stresses.

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Nonmigrating tidal characteristics in the thermospheric neutral mass density

  • Kwak, Young-Sil;Kil, Hyosub;Lee, Woo-Kyoung;Oh, Seung-Jun;Yang, Tae-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.125.1-125.1
    • /
    • 2012
  • The wave number 4 (wave-4) and wave number 3 (wave-3) longitudinal structures in the thermospheric neutral mass density are understood as tidal structures driven by diurnal eastward-propagating zonal wave number 3 (DE3) and wave number 2 (DE2) tides, respectively. However, those structures have been identified using data from limited time periods, and the consistency and recurrence of those structures have not yet been examined using long-term observation data. We examine the persistence of those structures by analyzing the neutral mass density data for the years 2001-2008 taken by the CHAllenging Minisatellite Payload (CHAMP) satellite. During years of low solar activity, the amplitude of the wave-4 structure is pronounced during August and September, and the wave-4 phase shows a consistent eastward phase progression of $90^{\circ}$ within 24 h local time in different months and years. During years of high solar activity, the wave-4 amplitude is small and does not show a distinctive annual pattern, but the tendency of the eastward phase shift at a rate of $90^{\circ}$/24 h exists. Thus the DE3 signature in the wave-4 structure is considered as a persistent feature. The wave-3 structure is a weak feature in most months and years. The amplitude and phase of the wave-3 structure do not show a notable solar cycle dependence. Among the contributing tidal modes to the wave-3 structure, the DE2 amplitude is most pronounced. This result may suggest that the DE2 signature, although it is a weak signature, is a perceivable persistent feature in the thermosphere.

  • PDF

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.

앞전에서의 팽창파를 이용한 양항비의 개선에 대한 연구

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.19-22
    • /
    • 2016
  • Leading edge thrust is generally caused by passing air flow from lower to upper surface and it is required to have sufficient angle of attack for notable leading edge thrust. To produce leading edge thrust at low angle of attack, utilizing expansion wave accompanying low pressure is able to be a solution. Fore structure changes the direction of flow, and this flow passes the projected edge. As a result, from a perspective of the edge, it is able to have high angle of attack, and artificial expansion wave is generated. This concept shows 9.48% increase of L/D in inviscid flow, at Mach number 1.3 and angle of attack $1^{\circ}$ in maximum, and this model shows the 3.98% of increasement at angle of attack $2^{\circ}$. Although advantage of the artificial expansion wave decreased as angle of attack increase, it shows the possibility of aerodynamical improvement with artificial expansion wave.

  • PDF

A study on noise source identification of ship stem structure (선박 선미부 소음 현상 규명 및 저감에 관한 연구)

  • Choi, S.H.;Kim, N.S.;Lee, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.54-60
    • /
    • 2006
  • This study looks over the relation between propeller and noise in ship stern structure. Near field noise and vibration measurements are compared with the analytical results using wave number method. To avoid singularity in wave number integration method, fast field method is introduced. Analytical results show that main transmission mechanism of high frequency noise is structure-borne type and that of low frequency noise is a air-borne type.

  • PDF

A STUDY ON TAYLOR FLOW ACCORDING TO RADIUS RATION AND ANGULAR VELOCITY (반경비 및 각속도의 변화에 따른 Taylor 유동에 관한 연구)

  • Bae, K.Y.;Kim, H.B.;Chung, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.127-133
    • /
    • 2007
  • This paper represents the numerical study on Taylor flow according to the radius ratio and the angular velocity for flow between tow cylinder. The numerical model is consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8 mm, the numerical parameters are angular velocity and radius ratio. The numerical method is compared with the experimental results by Wereley, and the results are very good agreement. The critical Taylor number is calculated by theoretical and numerical analysis, and the results is showed the difference about ${\pm}10\;%$. As $Re/Re_c$ is increased, Taylor vortex is changed to wavy vortex, and then the wave number for azimuthal direction is increased. Azimuthal wave according to the radius ratio is showed high amplitude and low frequence in case of small radius ratio, and is showed low amplitude and high frequence in case of large radius ratio.

  • PDF