• Title/Summary/Keyword: Low voltage operation

Search Result 1,030, Processing Time 0.027 seconds

A Two-Step Micromirror for Low Voltage Operation

  • Hwang Yong-Ha;Han Seungoh;Lee Byung-Kab;Kim Jae-Soon;Pak James Jungho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.270-275
    • /
    • 2005
  • In order for the application of the in-vivo endoscopic biopsy, a micromirror which can be driven at a low voltage is required. In this paper, a two-step micromirror composed of bottom electrodes, moving plate and top mirror plate is proposed. Because an electrical wiring of two plates are separated, they can be actuated separately. Therefore, an intermediate moving plate plays an important role in reducing the driving voltage in half. The designed device was fabricated by the surface micromachining. Maximum rotation angle of $6.3^{\circ}$ was obtained by applying DC 48V, while a conventional one-step mirror pulled down at DC 120V. The designed structure can be used in microphotonic applications requiring low driving voltage.

Design and Analysis of 16 V N-TYPE MOSFET Transistor for the Output Resistance Improvement at Low Gate Bias (16 V 급 NMOSFET 소자의 낮은 게이트 전압 영역에서 출력저항 개선에 대한 연구)

  • Kim, Young-Mok;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2008
  • In this paper we proposed a new source-drain structure for N-type MOSFET which can suppress the output resistance reduction of a device in saturation region due to soft break down leakage at high drain voltage when the gate is biased around relatively low voltage. When a device is generally used as a switch at high gate bias the current level is very important for the operation. but in electronic circuit like an amplifier we should mainly consider the output resistance for the stable voltage gain and the operation at low gate bias. Hence with T-SUPREM simulator we designed devices that operate at low gate bias and high gate bias respectively without a extra photo mask layer and ion-implantation steps. As a result the soft break down leakage due to impact ionization is reduced remarkably and the output resistance increases about 3 times in the device that operates at the low gate bias. Also it is expected that electronic circuit designers can easily design a circuit using the offered N-type MOSFET device with the better output resistance.

Overstress-Free 4 × VDD Switch in a Generic Logic Process Supporting High and Low Voltage Modes

  • Song, Seung-Hwan;Kim, Jongyeon;Kim, Chris H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.664-670
    • /
    • 2015
  • A four-times-VDD switch that supports high and low voltage mode operations is demonstrated in a generic 65 nm logic process. The proposed switch shows the robust operation for supply voltages ranging from VDD to $4{\times}VDD$. A cascaded voltage switch and a voltage doubler based charge pump generate the intermediate supply voltage levels required for the proposed high voltage switch. All the high voltage circuits developed in this work can be implemented using standard logic transistors without being subject to any voltage overstress.

Design of Low Power Current Memory Circuit based on Voltage Scaling (Voltage Scaling 기반의 저전력 전류메모리 회로 설계)

  • Yeo, Sung-Dae;Kim, Jong-Un;Cho, Tae-Il;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • A wireless communication system is required to be implemented with the low power circuits because it uses a battery having a limited energy. Therefore, the current mode circuit has been studied because it consumes constant power regardless of the frequency change. However, the clock-feedthrough problem is happened by leak of stored energy in memory operation. In this paper, we suggest the current memory circuit to minimize the clock-feedthrough problem and introduce a technique for ultra low power operation by inducing dynamic voltage scaling. The current memory circuit was designed with BSIM3 model of $0.35{\mu}m$ process and was operated in the near-threshold region. From the simulation result, the clock-feedthrough could be minimized when designing the memory MOS Width of $2{\mu}m$, the switch MOS Width of $0.3{\mu}m$ and dummy MOS Width of $13{\mu}m$ in 1MHz switching operation. The power consumption was calculated with $3.7{\mu}W$ at the supply voltage of 1.2 V, near-threshold voltage.

A Study on ground fault at low voltage line and apparatus in urban railway station (도시철도역사의 저압선로 및 기기에서의 지락사고 방지 방안에 관한 검토)

  • Min Kyung-Yun;Kim Jin-Ho;Han Hag-Su
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.699-704
    • /
    • 2005
  • In the station of the railway and the subway various illumination equipment and a general power equipment for a passenger convenience, the signal equipment and the communication equipment which is necessary to the train operation provided. At the all of like this equipment from the electric room which is established in each station by changing from high voltage to low voltage and it supplies from the illumination transformer, the power transformer and the signal transformer. If it supplies to the equipment from the high voltage to the low voltage, it must be established to contact protection device in between the high voltage coil and the low voltage coil. Also it must do the grounding faulting device at the low voltage lines, the earthing devices at apparatus for the protection of an electric shock and an electric fire by the electric relation law. Compared the related regulations between the facilities which require protective functions such as grounding fault or earthing in public utilities like subway stations, and the facilities which do not require line earthing or protective functions such as electricity supplied for signalling the train. Also, will describe a countermeasure for the accident from a grounding fault.

  • PDF

Loss Analysis of Three Phase Induction Motor Connected to Single Phase Source (단상전원에 접속된 3상 유도전동기의 손실분석)

  • Kim, Do-Jin;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • This paper analyzes the losses of a Steinmetz connection three-phase induction motor which is supplied by a single-phase source. The T-type equivalent circuit which is taken no-load losses into account is used to determine phase converter capacitive reactances at starting and rated speed by using the condition of the minimum voltage unbalance. The starting and the operating capacitor are replaced at the slip of the same voltage unbalance factor points which are depicted using two capacitive reactances. The operation characteristics are investigated by comparing with those of three-phase balanced operation to find the feasibility of single-phase operation. To analyze the losses of this motor, the output power decrease factor(OPDF), the loss ratio(LR), the no load loss ratio(NLLR), the copper loss ratio(CLR), the stator copper loss ratio(SCLR), and the rotor copper loss ratio(RCLR) are defined and simulated in the whole slip range. The simulated results show that OPDF is maintained almost uniformly, LR is low at low speed and high at high speed, CLR is higher !ban NLLR, but CLR varies concavely and NLLR varies convexly at high speed, SCLR is low at low speed and high at high speed, but SCLR varies convexly at high speed, and RCLR is nearly opposite to SCLR.

Advanced Field Weakening Control for Maximum Output Power Operation of Seawater Cooling Pump Induction Motor in a Limited Environment (제한된 환경에서의 해수냉각펌프용 유도전동기 최대출력 운전을 위한 약계자 제어)

  • Son, Yung-Deug;Seo, Yong-Joo;Jung, Jun-Hyung;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.540-546
    • /
    • 2013
  • The induction motor is used for driving the special equipments such as warship and submarine pump due to robust structure and simple maintenance. Domestic and foreign warships use a wide range of voltages and the DC voltage sources mainly from battery. In the low voltage level, the ${\Delta}$-connection operation of induction motor can be used for the maximum power. However, the temperature of the inverter increases because of the high input current. On the other hand, Y-connection operation of the induction motor does not cause a problem of temperature because of the low input current compared to the ${\Delta}$-connection. But the lack of the supply voltage can not be avoided. Therefore, this paper suggests the algorithm of the optimum field weakening control to extend the operating range of the induction motor with maximum power in a limited thermal and DC voltage condition.

A Study on Variable Speed Generation System with Energy Saving Function

  • Dugarjav, Bayasgalan;Lee, Sang-Ho;Han, Dong-Hwa;Lee, Young-Jin;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.137-143
    • /
    • 2013
  • This paper presents development of variable speed generation (VSG) system with energy saving function. The rubber tyred gantry crane (RTGC) requires the power from diesel-engine. Significant fuel savings by reducing the engine speed can be achieved, because all of operation modes except hoisting are required lower power than rated value of engine. When low speed operation output voltage of generator is decrease until acceptable range of motor driver inverters and auxiliary load supplier. According to power demand engine speed is varying from 20 to 60Hz, and voltage is varying between 210Vac and 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control and inverters dc site voltage is compensated by it. This paper proposed 3-phase interleaved boost converter which has the same structure as the commercially available 3-phase inverter and current sharing capability. 400kW interleaved converter is designed and a performance of converter is evaluated through several experiments with a RTGC system. Energy saving VSG system can cut down fuel consumption by 36% and 21.3% at idle and unidirectional load operations.

Development of the High Input Voltage Self-Power for LVDC

  • Kim, Kuk-Hyeon;Kim, Soo-Yeon;Choi, Eun-Kyung;HwangBo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.387-395
    • /
    • 2021
  • Distributed resources such as renewable energy sources and ESS are connected to the low voltage direct current(LVDC) distribution network through the power conversion system(PCS). Control power is required for the operation of the PCS. In general, controller power is supplied from AC power or DC power through switch mode power supply(SMPS). However, the conventional SMPS has a low input voltage, so development and research on high input voltage self-power suitable for LVDC is insufficient. In this paper, to develop Self-Power that can be used for LVDC, the characteristics of the conventional topology are analyzed, and a series-input single-output flyback converter using a flux-sharing transformer for high voltage is designed. The high input voltage Self-Power was designed in the DCM(discontinuous current mode) to reduce the switching loss and solve the problem of current dissipation. In addition, since it operates even at low input voltage, it can be applied to many applications as well as LVDC. The validity of the proposed high input voltage self-power is verified through experiments.

Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter (저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계)

  • Yoo, Young-Do;Kim, In-Dong;Nho, Eui-Cheol;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.