• Title/Summary/Keyword: Low voltage motor

Search Result 425, Processing Time 0.023 seconds

Analysis of Overvoltage Distribution in Low-Voltage Induction Motor Due to Inverter Switching Surge (인버터 스위칭 써지에 의한 저압 유도전동기의 과도전압 분포해석)

  • Hwang, Don-Ha;Kim, Yong-Joo;Lee, In-Woo;Bae, Sung-Woo;Kim, Dong-Hee;Ro, Chae-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1151-1153
    • /
    • 2003
  • In this paper, switching surge voltage distribution in stator windings of induction motor driven by IGBT PWM inverter is studied. To analyze the irregular voltage of stator winding, equivalent circuit model of inverter-cable-motor was proposed and high frequency parameter is computed by using finite element method (FEM). Electromagnetic transient program (EMTP) analysis of the whole system for induction motor and PWM inverter is proposed. In order to experiment, an induction motor, 380 [V], 50 [HP], with taps from one phase and a switching surge generator was built to consider the voltage distribution.

  • PDF

Speed Control of a Sensorless BLDC Motor (위치 및 속도검출기 없는 BLDC 전동기의 속도제어에 관한 연구)

  • 이홍락;김성환;권영안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.24-30
    • /
    • 1996
  • BLDC motor is widely used as a servo motor, because it has high efficiency, high power ratio, low inertia, and easy maintenance. However, position and speed sensors generally attached in BLDC motor increase motor cost, and limit environments of application. This study describes a sensorless speed control of sinusoidal BLDC motor using the d-q transformed instantaneous voltage equation, and presents the result of computer simulation. The sensorless algorithm is applied to the casse of a voltage controlled PWM inverter. The result indicates good dynamics and a robust control in cases of a load change and a system parameter variation.

  • PDF

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage with Harmonics Components (고조파 성분이 포함된 전압 불평형 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.134-140
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are usually balanced and connected to three power systems. However, in the user power distribution systems, partial loads are single & three phase and unbalanced, generating voltage unbalance by the impedance mismatching. Voltage unbalance has detrimental effects on three-phase induction motors, including over heating, line-current unbalance, derating, torque pulsation, low efficiency, etc. This paper presents a scheme on operation states of a three-phase induction motor under the unbalanced voltages with harmonics components. Three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting not only fundamental but also harmonics components. Harmonic components at the voltage unbalanced factor(VUF) of the three-phase source voltages can then be examined the different values of VUF on machine's operation characteristics.

Low Speed Operation of Simplified Sensorless Control of Synchronous Reluctance Motor (동기형 릴럭턴스 전동기의 단순구조형 센서리스 제어의 저속운전)

  • Ahn, Joon-Seon;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.61-68
    • /
    • 2006
  • Many researchers have worked for the sensorless control of SynRM in recent years. However they commonly requires large calculations which induced from its complexity. For low cost application as like home appliance, it is difficult to utilize because of the cost problem. Therefore, it is necessary to introduce simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. In this paper the sensorless control is performed using the characteristics of SynRM structure in which the linkage flux varies with rotor position, so the rotor position can be detected by the change of linkage flux. The estimation of linkage flux can be acquired from the integration of the motor terminal voltage which is commonly used method for the reliability of the estimation. However this estimation method has demerits in low speed operation therefore in that region the motor terminal voltage is compensated by the phase current. A digital simulation (MATLAB) and experiment were performed to confirm the adequacy of the proposed control scheme.

Performance Improvement of an Induction Motor in Low Speed Region

  • Kim, Seong-Hwan;Park, Tae-Sik;Kim, Nam-Jeung;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-72
    • /
    • 1997
  • Since the average speed calculated with encoder pulses inevitably has time delay, the control performance as well as the system stability is deteriorated. especially at the low speed region. Additionally, the distorted inverter output voltage due to the dead time effects and the forward voltage drops of the VSI (Voltage Source Inverter) causes torque ripples and their effects are more severe at the low speed operation of an induction motor. In this paper, an accurate speed estimation method using Kalman Filter Algorithm is presented to improve the performance of an induction motor speed control with a low precision encoder at low speed legion. The dead time effects and the forward voltage drops of the VSI are feedforwardly compensated to produce an exact inverter output voltage.

  • PDF

Develop of BLDC Electric Motor for Outboard Motor Drive (선외기 구동을 위한 BLDC 전기모터 개발)

  • Shin, Cheol-Gi;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.766-770
    • /
    • 2013
  • This paper tried to develop a BLDC electric motor securing the 800 W-level watertight structure for driving the outboard motor. For this purpose, this paper developed a high-efficient controller-integrating BLDC electric motor system for underwater propulsion and designed and developed a triple watertight structure. Besides, this study developed a outboard motor integrating motor, propeller and controller based on the production of a controller for BLDC motor which can the speed control by selecting low-voltage, high-current power element. The characteristics of developed outboard motor were 24 V input voltage, over 800 W motor output, and max. 3,000 rpm motor, and 84.9% motor efficiency, and the developed outboard motor could secure the watertight structure in 5 m in water depth.

Analysis on the Effect of LCR Filter to Mitigate Transient Overvoltage on the High Voltage Induction Motor Fed by Multi Level Inverter (멀티레벨 인버터 구동 고압유도전동기에시 발생하는 과도과전압 저감을 위한 LCR필터의 효과분석)

  • Kim, Jae-Chul;Kwon, Young-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, we analyze on the effect of LCR filter to mitigate transient overvoltage on the high voltage induction motor fed by H-bridge cascaded 7-level inverter. The switching surge voltage that it was occurred in inverter appears transient overvoltage at the motor input terminal. the transient overvoltage becomes the major cause to occur the insulation failure by serious voltage stress in the stator winding of high voltage induction motor. The effect of transient overvoltage appears more serious in high voltage induction motor than low voltage induction motor. We selected LCR filter for reduction of the transient overvoltage. Consequently, we demonstrated that the LCR filter connected to the invertor output terminals greatly reduces the transient voltage stress and ringing. The results of simulation show the suppression of transient overvoltage at the motor end of a long cable. using EMTP

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

The Starting Characteristics of Single Phase Induction Motor by Control of Phase and Voltage (위상각과 전압제어에 의한 단상유도전동기의 기동특성)

  • Sung, K.M.;Park, S.K.;Choi, Y.O.;Cho, G.B.;Oh, K.G.;Baek, H.L.;Park, H.A.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.350-352
    • /
    • 1995
  • The starting characteristics of single phase induction motor(SPIM) is described by control of phase and voltage. Auxiliary winding voltage is controlled by DC amplifier and phase is integrator. These processes enable comparison of torque with slip in each voltage and phase angle variations. Simulation and experimentation results of the motor's torque-slip characteristics using the controlled auxiliary winding voltage and phase angle arc shown and discussed. As a results, starting time is fast and main winding current is small when auxiliary winding voltage is low than rating voltage and starting characteristics is good in phase angle $90^{\circ}$.

  • PDF

The Development of Ultrasonic Motor-Digital Multi Controller using FPGA (FPGA를 이용한 초음파 모터 구동용 디지털 다중 제어기 개발)

  • Kim, Dong-Ok;Kim, Young-Dong;Oh, Geum-Kon;Jung, Gook-Young;Jun, Chan-Ju;Ryu, Jae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.187-190
    • /
    • 2002
  • In contrast to conventional electromagnetic motor, USM(Ultrasonic Motor), as piezoelectric ceramic applying ultrasonic mechanical vibration and as frictional-movement type motor, get rotational torque by elastic friction between stator and rotator, The USM, which is small motor without iron cores and coil as a simple structure, has little load weight, has character of high torque at low speed, and can apply a direct drive type without deceleration gear as low speed type. A response of USM from control input is satisfactory, and also generates much torque in low speed driving, and holding torque is much without supplying power. In this study, I designed and made Ultrasonic motor-digital multi controller(USM- DMC) using FPGA chip, A54SX72A made in Actel Corporation. By the minute, USM-DMC can control frequency, duty ratio, and phase difference of USM by llbit digital input from Pc. Therefore, when we use this controller, we can apply to typical parameter, frequency, phase difference, and voltage parameter, to control as well as we can do mixing control like phase-frequency, phase-voltage, frequency-voltage, frequency-phase-voltage, What is more, the strongest point is that it can trace frequency based on optimized frequency because we can input optimized resonant frequency while in motoring.

  • PDF