• Title/Summary/Keyword: Low viscosity

Search Result 1,245, Processing Time 0.03 seconds

The Reactivity of Different Polyols for Paint to Polyisocyanate (도료용 폴리올 종류에 따른 폴리이소시아네이트와의 반응성)

  • Seo, Seok-Hwan;Suh, Cha-Soo;Park, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.388-396
    • /
    • 2008
  • 2 Components polyurethane coatings are widely used for the industrial coating in general because of its excellent film performance and the workability which were brought by the 3 dimensional cross linked chain structures being formed after the reaction between polyol and polyisocyanate. 2 components polyurethane can be classified into alkyd polyol, polyester polyol, acrylic polyol and polyester modified acrylic polyol depending on where it is used. This research was conducted under the conditions below; different chemical compositions of resin for paint, set the same conditions of viscosity, thinner and acid value, set alternative polyols, OH values and catalysts, set alternative polyisocyanate hardeners of the paint, measure the reaction rates and dynamic mechanical characteristics using RPT-3000, Rotation Rheometer, DMA and FTIR. The research found that the reactivity between polyol and isocyanate influences the film performance and workability depending on the catalysts, OH values and chemical compositions. We find out that different reaction rate of acrylic polyol and polyester modified acrylic polyol with poly-isocyanate is not influenced on temperature and catalyst. In addition, reaction speed of high hydroxyl content polyol is faster than low hydroxyl equivalent. These results can improve difficult working condition to apply urethane coating.

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Study of Molecular and Crystalline Structure and Physicochemical Properties of Rice Starch with Varying Amylose Content (아밀로오스 함량이 다른 쌀 전분의 분자 및 결정 구조와 이화학적 특성)

  • You, Su-Yeon;Lee, Eun-Jung;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.682-688
    • /
    • 2014
  • The in vitro digestibility and molecular and crystalline structures of rice starches (Seilmi, Dasan1, and Segoami) with differing amylose content were investigated. Segoami had the highest amylose content (30.9%), whereas Dasan1 had the lowest amylose content (21.2%). The molecular weight ($\bar{M}_w$) of amylose and amylopectin in Segoami was much lower than that of the other two rice starches. Segoami had the highest proportion (8.7%) of amylopectin short branch chains (DP 6-12) and the lowest proportion of B1 chains (DP 13-24). The relative crystallinity, intensity ratio of $1047-1022cm^{-1}$ (1047/1022) and gelatinization enthalpy followed the order: Segoami>Seilmi~Dasan1. Segoami showed substantially low pasting viscosity. Rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents showed the highest value in Seilmi, Dasan1, and Segoami, respectively. The expected glycemic index (eGI) of Segoami was lower than that of the other two rice starches. Overall results suggested that the digestibility of rice starch could be highly influenced by their molecular and crystalline structure.

Rheological characterization of thermoplasticized injectable gutta percha and resilon (열연화주입형 gutta percha와 resilon의 유변학적 특성)

  • Chang, Ju-Hea;Baek, Seung-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.377-384
    • /
    • 2011
  • Objectives: The purpose of this study was to observe the change in the viscoelastic properties of thermoplasticized injectable root canal filling materials as a function of temperature and to compare the handling characteristics of these materials. Materials and Methods: Three commercial gutta perchas and Resilon (Pentron Clinical Technologies) in a pellet form were heated in the Obtura-II system (Obtura Spartan) at $140^{\circ}C$ and $200^{\circ}C$, and the extrusion temperature of the thermoplasticized materials was measured. The viscoelastic properties of the materials as a function of temperature were evaluated using a rheometer. The elastic modulus G', viscous modulus G", loss tangent tan${\delta}$, and complex viscosity ${\eta}^*$ were determined. The phase transition temperature was determined by both the rheometer and a differential scanning calorimeter (DSC). The consistency of the materials was compared under compacting pressure at $60^{\circ}C$ and $40^{\circ}C$ by a squeeze test. Results: The three gutta perchas had dissimilar profiles in viscoelastic properties with varying temperature. The phase transition of softened materials into solidification occurred at $40^{\circ}C$ to $50^{\circ}C$, and the onset temperatures obtained by a rheometer and a DSC were similar to each other. The onset temperature of phase transition and the consistency upon compaction pressure were different among the materials (p < 0.05). Resilon had a rheologically similar pattern to the gutta perchas, and was featured between high and low-flow gutta perchas. Conclusions: The rheological characteristics of the thermoplasticized root canal filling materials changed under a cooling process. The dissimilar viscoelastic properties among the materials require different handling characteristics during an injecting and compacting procedure.

Study of Hydrotrope Action and Liquid Crystal Behavior of Concentrated Liquid Detergents (농축세정제의 액정 상거동과 하이드로트로프 작용에 대한 연구)

  • Chi, Gyeong-Yup
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.516-520
    • /
    • 2016
  • Concentrated liquid detergents have 2~3 times higher surfactant contents [35~45% (w/w)] compared to those of normal type detergents. In general, a single surfactant forms a lyotropic liquid crystal (LC) phase when the concentration is in the region of 30~60% (w/w). Whereas the concentrated liquid detergent at about 40% (w/w) concentration in a mixed surfactant system shows an opaque appearance of gel or LC. In order to meet consumer needs and preference for product appearance, we applied hydrotropes and various surfactants systems in concentrated liquid detergents to obtain an opaque gel-phase and also a clear transparent phase at even below zero $^{\circ}C$ temperature. The more effective hydrotropes for making concentrated liquid detergents are 1,6-hexanediol, adipic acid and dipropylene glycol (DPG) which have two hydrophilic groups in both terminated positions. In order to prepare an excellent concentrated liquid detergent, good hydrotropes alongside secondary type surfactants like LAS and SAS were used. The formation of LC phase of concentrated liquid detergents at about 40% (w/w) concentration could be prevented by the use of both hydrotropes and secondary type surfactants. The result indicate that concentrated detergents having excellent low temperature stability and controlled viscosity can be prepared.

Functional Properties of Cellulose-Based Films (셀룰로오스 포장지의 기능성)

  • Kim, Young-Ho;Park, Hyun-Jin;Kim, Dong-Man;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.133-137
    • /
    • 1994
  • Functional properties of packaging films prepared with cellulose derivatives were measured. As a presolvation treatments of celluloses, 95% ethanol solution for methylcellulose (MC), hydroxypropyl-methylcellulose (HPMC) and ethylcellulose (EC) and water for hydroxypropyl cellulose (HPC) were used. For film sheeting, the ethanol concentration of final cellulose solution should exceed 50% for MC, HPMC and HPC and 80% for EC. Thickness and functionalities of the prepared films were varied by type, molecular weight and viscosity of the cellulose and kind of plasticizer used. Tensile strength of MC, HPMC and HPC films were $67.7{\sim}275.4\;MPa$, $124.6{\sim}260.0\;MPa$, and $14.8{\sim}29.4\;MPa$, respectively. The strength of MC and HPMC films was higher than that of low density polyethylene (LDPE) films $(13.1{\sim}27.6\;MPa)$. Solubility of the cellulose films varied widely by plasticizer used and the films containing polyethyleneglycol (PEG) as a plasticizer was more soluble than the films by glycerol. Maximum water vapor permeability and oxygen permeability of the cellulose films was more than 1,000 folds and less than one-twelfth of the LDPE film, respectively.

  • PDF

Quality Properties of Yellow Layer Cake Prepared with Diacylglycerol Oil (다이아실글리세롤 오일을 첨가한 옐로우 레이어 케이크의 품질특성)

  • Moon, Sung-Lan;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.775-783
    • /
    • 2008
  • This study was performed to research quality characteristics of yellow layer cakes added with diacylglycerol oil and their effectiveness in reducing trans fatty acids and inhibiting accumulation of fats in the body. The diacylglycerol oil used in this study contained 80% diacylglycerol. In treatments 0, 10, 20, 30 and 40% of the weight of margarine were substituted with diacylglycerol oil. pH and specific gravity of cake batter of treatments increased with more diacylglycerol oil compared to that of the control group. Viscosity of cake batters of treatments also became higher with increasing diacylglycerol oil than that of the control. pH of cakes rose up with increasing amounts of diacylglycerol oil. Volume of cakes became bigger by reducing loss due to water evaporation in a baking process, resulting in a moister texture because of increased moisturizing capacity in oil. In the case of color, the Hunter's colorimetric lightness (L) got higher as the added amount was increased, and redness (a), yellowness (b) and color different ($\Delta$E) got lower against control accordingly. In particular, 30% treatment showed higher levels in the areas of volumes and moisture contents while 20 and 30% treatments were superior in sensory characteristics. Therefore, a yellow layer cake made by substituting 30% of the weight of margarine with diacylglycerol oil was expected to be a low-calorie cake because the oil improves taste and quality of cakes, reduces trans-fatty acids and inhibits accumulation of fats.

Studies on the Physico-chemical Properties of Vitrified Forms of the Low- and Intermediate-level Radioactive Waste (${\cdot}$저준위 방사성폐기물 유리고화체의 물리${\cdot}$화학적 특성 연구)

  • Kim, Cheon-Woo;Park, Byoung-Chul;Kim, Hyang-Mi;Kim, Tae-Wook;Choi, Kwan-Sik;Park, Jong-Kil;Shin, Sang-Woon;Song, Myung-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.839-845
    • /
    • 2001
  • In order to vitrify the Ion-Exchange Resin(IER), Dry Active Waste(DAW), and borate concentrate generated from the commercial nuclear facilities, the glass formulation study based on the their compositions was performed. Two glasses named as RG-1 and DG-1 were formulated as the candidate glasses for the vitrification of hte IER and DAW, respectively. A glass named as MG-1 was also formulated as a candidate glass for the vitrification of the mixed wastes containing the IER, DAW, and borate concentrate. The process parameters, product qualities, and economics were evaluated for the candidate glasses and confirmed experimentally for the some properties. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. the product qualities such as glass density, chemical durability, phase stability, etc. were satisfactory. In case of vitrifying the wastes using our developed glass formulation study, the volume reduction factors for the IER, DAW and mixed wastes were evaluated as 21, 89 and 75, respectively.

  • PDF

Modification of surface pretreatment of white spot lesions to improve the safety and efficacy of resin infiltration

  • Yim, Hyun-Kyung;Min, Ji-Hyun;Kwon, Ho-Keun;Kim, Baek-Il
    • The korean journal of orthodontics
    • /
    • v.44 no.4
    • /
    • pp.195-202
    • /
    • 2014
  • Objective: A low-viscosity resin (infiltrant) was used to inhibit the progression of white spot lesions (WSLs) and resolve associated esthetic issues. An alternative pretreatment was explored to increase the pore volume of the surface layer of the WSLs. Also, the penetration effects of the infiltrant were evaluated for various pretreatments. Methods: Sixty two artificial lesions were fabricated on bovine teeth. As a positive control, 15% HCl gel was applied for 120 seconds. Further, 37% $H_3PO_4$ gel was applied for 30 seconds using three methods. The samples were divided as follows: $H_3PO_4$ only group, $H_3PO_4$ sponge group, and $H_3PO_4$ brush group. The acid was gently rubbed with the applicators (i.e., a sponge or brush) throughout the application time. To compare the effects of resin infiltration, twenty paired halves of specimens were treated with an infiltrant (ICON$^{(R)}$). Results: Thicknesses of the removed surface layers and infiltrated areas were evaluated by confocal laser scanning microscope. The positive control and the 37% $H_3PO_4$ brush group failed to show significant differences in the removed thickness (p > 0.05); however, the mean percentage of the infiltrated area was higher in the 37% $H_3PO_4$ brush group ($84.13{\pm}7.58%$%) than the positive control ($63.51{\pm}7.62%$, p < 0.001). Scanning electron microscope observations indicate higher pore volumes for the 37% $H_3PO_4$ brush group than for the positive control. Conclusions: Application of 37% $H_3PO_4$ with a brush for 30 seconds increased the pore volume of WSL surface layers and the percentage of infiltrated areas in comparison to the use of 15% HCl for 120 seconds.

Effect of Fermentation Periods on the Qualities and Physiological Functionalities of the Mushroom Fermentation Broth (발효기간이 버섯 발효액의 품질과 생리 기능성에 미치는 영향)

  • Kim, Na-Mi;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.31 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • To establish the optimal fermentation periods in the manufacture of mushroom fermentation foods using sugar, changes of quality characteristics of the mushrooms fermentation broth were investigated with changes of enzyme activity and physiological functionality during fermentation. Viscosity, L value (lightness), a value (redness) and b value (yellowness) were significantly decreased after 3 months of fermentation and after that, increased. In sensory evaluation test, unique flavors and tastes of mushrooms in the fermented broth were decreased during fermentation, whereas the other tastes and flavors were gradually increased. Overall acceptability was the highest in the 3 months of fermentation broth. ${\alpha}-Amylase$ activities of the fermented broth were significantly increased to 1 month of fermentation, however invertase and cellulose activities were low or not detected in the fermented broth. Antioxidant activities were the highest in 4 months of fermentation and after that, decreased. Tyrosinase inhibitory activities were high in all samples and they were not changed during fermentation. SOD-like activity was high in the fermentation broth of Flammulina velutipes and it was also not changed during fermentation. In conclusion, optimal fermentation periods in the manufacture of mushroom fermentation foods using sugar was 3 or 4 months.