• Title/Summary/Keyword: Low temperature treatment

Search Result 1,963, Processing Time 0.031 seconds

Aspects of spike damage by cold stress during young spike development period in wheat

  • Ahn, Seunghyun;Kim, Deawook;Lee, Hyeonseok;Jeong, Jaehyeok;Jeong, Hanyong;Hwang, Woonha;Choi, Kyungjin;Park, Hongkyu;Youn, Jongtag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.199-199
    • /
    • 2017
  • This study investigated the aspects of damage due to low temperature treatment in order to establish the damage criterion according to low temperature invasion during regeneration period in wheat after regeneration period in the early spring. We cultivated wheat cultivar 'Geumgang' in Wagner pots and treated them with three types of low temperature, and the gradual temperature change program was set in a low temperature incubator for 12.5 h per day for 5 days during the night time when the length of young spikes was about 1 mm. All treatments except for the control were treated in 5 steps for each temperature. Treatment 1 was treated at the lowest temperature $-5^{\circ}C$ for 5 h, treatment 2 for 7 h at $-5^{\circ}C$, and treatment 3 for 9 h at $-5^{\circ}C$. The most common type of damage was partial infertility, and there were some discolored spikes. The damage rate of wheat spikes treated at $-5^{\circ}C$ for 9 h was the highest, while the damage rates of wheat sprouts treated at 5h and 7h were not different from each other. It was found that the damage of wheat spikes exposed to low temperatures for a long time was large. It is necessary to investigate the aspects of spike damage by duration days of low temperature.

  • PDF

Rearing Temperature and Density Effects on the Number of Bacterial and Fungal Colonies in Metamorphosed Dybowski's Frogs (Rana dybowskii)

  • Kim, Jong-Sun;Choi, Woo-Jin;Park, Il-Kook;Koo, Kyo-Soung;Kang, Hui-Beom;Kwon, Oh-Sung;Lee, Seung-Hyeon;Choi, Hye-Ji;Lee, Jung-Hyun;Lee, Jin-Gu;Park, Dae-Sik
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.61-65
    • /
    • 2018
  • To know if small changes in rearing water temperature and density affect the number of bacterial and fungal colonies in metamorphosed frogs, Dybowski's frog tadpoles were reared from Gosner 25-26 stages at either low ($1^{\circ}C$ low to ambient water temperature), ambient, or high ($1^{\circ}C$ high) water temperature (each 15 tadpoles in 20 L water) condition and at either low (10 tadpoles/20 L water), medium (20 tadpoles), or high (30 tadpoles) density condition. Immediately after metamorphosis, we sampled bacteria and fungi from skin, liver, and heart of six metamorphosed frogs, randomly selected for each treatment group. After separate incubation of bacteria and fungi on 3M Petrifilm plates, we counted the number of bacterial and fungal colonies appeared on the plates and compared the numbers among the temperature and density treatment groups. For temperature treatment, high-temperature group had fewer bacterial colonies, while low-temperature group had more fungal colonies than the other two groups. For density treatment, low-density group had fewer bacterial colonies than the other two groups, but the number of fungal colonies were not different among the groups. Our results suggest that small increased rearing water temperature and lowered rearing density could potentially reduce pathogens in farming frogs.

Effect of Low Temperature Plasma Treatment on Wool Fabric Properties

  • Kan C. W.;Yuen C. W. M.
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yam frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yams and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.

Effect of Dampening Paper, Silica Gel and Temperature Treatment on Change of Flower Color of Dog-tooth Violet (Erythronium japonicum Decne) in Press Flower

  • Yoon Jae-Ho;Song Won-Seob
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.263-274
    • /
    • 2005
  • We have studied the effects of dampening papers (Dampened paper, Newspaper, Korean paper, Flower sheet), silica gel (30g, 60g) and temperature ($20^{\circ}C,\;25^{\circ}C$) on color changes of Erythronium japonicum. In the treatment of $20^{\circ}C$, color changes were low in treatments with silica gel rather than in a treatment of dampening papers. In particular, newspaper and Korean paper showed much less changes in colors by the combination treatments with 30g of silica gel. Likewise, in the treatment of $25^{\circ}C$, color changes were low in combination treatments with silica gel rather than in a alone treatment of dampening papers. For the combination treatment with 30g of silica gel, low color changes were shown in the divisions of newspaper and Korean paper, while for the combination treatment with 60g of silica gel, low color changes were shown in the those of Korean paper and dampened paper.

  • PDF

Heat Treatments Used in the Dairy Industry (유제품에 이용되는 주요 열처리 조건)

  • Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.230-236
    • /
    • 2020
  • Heat treatment is a fundamental processing technology in the dairy industry. The main purpose of heat treatment is to destroy pathogenic and spoilage promoting microorganisms to ensure milk safety and shelf life. Despite the development of alternative technologies, such as high-pressure processing and pulse field technology for microbial destruction, heat treatment is widely used in the dairy industry and in other food processes to destroy microorganisms. Heat treatment has contributed greatly to the success of food preservation since Pasteur's early discovery that heat treatment of wine and beer could prevent their deterioration, and since the introduction of milk pasteurization in the 1890s. In Korea, food labeling standards do not stratify heat treatments into low temperature, high temperature, and ultra-high temperature methods. Most milk is produced in Korea by pasteurization, with extended shelf life (ESL : 125--140℃ / 1-10 s). Classification based on temperature (i.e. low, high, and ultra-high), is meaningless.

Substrate Removal Characteristics for Low Temperature by Biological Activated Carbon (저온에서 생물활성탄의 기질제거특성)

  • Ryu, Seong Ho;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.76-93
    • /
    • 1997
  • Activated carbon is widely used for the treatment of water, wastewater and other liquid wastes. Biological activated carbon (BAC) process is water and wastewater treatment process developed in the 1970's. In addition to activated carbon adsorption, biodegradation organic pollutants occurs in the BAC bed where a large amount of aerobic biomass grows. This results in a long operation time of the carbon before having to be regenerated and thus a low treatment cost. Although the BAC process has been widely used, its mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption, whether these two reactions can promote each other or whether they just simultaneously exist in the BAC bed. Also, the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. And that, because biological process is influenced by low temperature, the mechanism of the BAC process is also effected by temperature variation in our country of winter temperature near the freezing point. Therefore, the objective of this study examines closely the mechanism of the BAC process by temperature variation using phenol as substrate. From this study, biological activated carbon is good substrate removal better than non adsorbing materials (charcoal, sand) as temperature variation, especially low temperature(near $5^{\circ}C$).

  • PDF

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Electron Transport Activities of Chloroplasts Isolated from the Detached Rice Leaves Stored under Low Temperature with Illumination (광 및 저온처리한 벼잎 절편에서 분이한 엽록체의 전자전달 활성)

  • 문병용
    • Journal of Plant Biology
    • /
    • v.31 no.4
    • /
    • pp.299-307
    • /
    • 1988
  • The electron transport activities of choloroplasts isolated from hte detached rise (Oryza sativa L. cv. Chucheong) leave stored under low temperature(4$^{\circ}C$) with light illumination were investigated to understand the role of light in the low temperature inhibition of photosynthesis in the chilling-sensitive plants. Chlorophyll content of the detached leaves upon incubation at 28$^{\circ}C$ and 4$^{\circ}C$ in the dark was also measured. The rice seedlings were grown with Hoagland medium in the growth chamber of 28$^{\circ}C$ temperature and 400 ft.c fluorescent light with the photoperiod of 16 h. Although chlorophyll content of the detached leaves stored in the dark declined by 61.7% after 28$^{\circ}C$ treatement, there occurred only 5.2% decrease of chlorophyll with 4$^{\circ}C$ treatment. Low temperature treatment(4$^{\circ}C$) for 6 days brought about decreases in total photosystem(PS II+PS I) activities by 35.2% and 73.6% in te presence and absence of light, respectively, while after 28$^{\circ}C$ treatment of the detached leaves for 6 days in the dark there was only 27.6% decrease in PS II+PS I activity. PS II activities were also decreased by 35.6% and 72.2% in the light and dark, respectively. PS I activities were decreased slightly, however, by 7.6% and 16.2% in the light and dark, respectively. Investigations into DPClongrightarrowDCPIP and NH2OHlongrightarrowDCPIP activities revealed that low temperature inhibition of PS II activities was not due to the inactivation of the water oxidation capacity at low temperature. It was concluded that light protects the electron transport activities of isolated rice chloroplasts from the inhibitory effect of low temperature in the detached leaves.

  • PDF

Rapid Effect of Low Temperature on the Freezing Resistance of Dehardening Trees (단기(短期) 저온처리(低溫處理)가 수목휴면지(樹木休眠枝) 내한성도(耐寒性度)에 미치는 효과(効果))

  • Hong, Sung Gak;Cho, Tae Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.28 no.1
    • /
    • pp.31-35
    • /
    • 1975
  • The present study explored the rapid effect of low temperature on the freezing resistance of dehardening twigs of three apple cultivars and sweet cherry. The effect of low temperature was depending upon the thawing treatment following to the low temperature treatment. When the freezing temperature to $-9^{\circ}C$ for three hours followed by thawing treatment ($5^{\circ}C$) was given repeatedly twice, the low temperature increased apparently the cold hardiness of apple and cherry by 3 to $9^{\circ}C$. On the other hand, when the freezing temperature ($-9^{\circ}C$) for ten hours was pretreated without thawing, the low temperature appeared not affecting the cold resistance of the twigs. The role of freezing-thawing temperature cycle in nature was discussed as a signal of environmental stimulus to which dehardening plant may be responding to increase their cold hardiness so as to adapt against the damage of late frost in early spring.

  • PDF

Effect of Nitrogen level under low Temperature Condition on Growth Characters, Nitrogen Concentration and Ethylene Evolution of Rice Varieties (저온하에서 질소시비량이 수도품종의 생육형질, 질소함량 및 ethylene 생성량에 미치는 영향)

  • Lee, Jong-Hoon;Lee, Moon-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.215-223
    • /
    • 1987
  • This experiment was carried out to determine the effect of nitrogen application on the cold tolerance of rice plant, with treatment of three levels of nitrogen and three times of application under the low temperature at tillering and panicle initiation stages. The higher cold tolerance variety was increased in plant height and number of tillers on high nitrogen level during the low temperature treatment. Nitrogen content of leaf blade was increased, but carbohydrate content was decreased during the low temperature treatment at tillering stage. Ethylene evolution from leaf was remark-ably increased just after low temperature treatment. Highly significant negative correlation was observed bet-ween the nitrogen content of leaf blade and percentage of filled grain under low temperature condition at reproductive growth stage.

  • PDF