• Title/Summary/Keyword: Low temperature toughness

Search Result 195, Processing Time 0.029 seconds

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

Effect of Molybdenum Addition on the Mechanical Properties of Direct-Quenched Low-Carbon Non-Treated Steels (직접 소입 저탄소 비조질강의 기계적 성질에 미치는 몰리브덴의 영향)

  • Ju, Eun-Seok;An, Byeong-Gyu;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.364-375
    • /
    • 1994
  • The microstructure of medium-carbon non-heat treated steels by air-cooling shows ferritepearlite structure. Compared to the conventional Q/T steels, the strength of these steels containing V, Nb and Ti are similar to Q/T steels. However, their toughness are inferior. In this study, the mechanical properties and microstructures of low-carbon Mo bearing steels produced by direct-quenching process were investigated. Especially, the effect of Mo on the direct-quenched steels was examined. The direct-quenched steels containing Mo were found to have higher strength and toughness. Mo seemed to be effective in producing the fine structure and dense precipitates because of decreasing transformation temperature. The best results were 1211 MPa in UTS and 127.5 J in toughness in the oil quenched 0.15C+O.llV+ 0.035Nb+ 1.81Mo steel. Compared to 0.4% C microalloyed steels, this results showed that UTS increased by 45% and toughness by 2 times.

  • PDF

Synthesis and Rapid Consolidation of W-1.5 ZrO2 Composite (W-1.5 ZrO2 복합재료 합성과 급속소결)

  • Kim, Seong-Eun;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.653-658
    • /
    • 2018
  • $ZrO_2$ is a candidate material for hip and knee joint replacements because of its excellent combination of biocompatibility, corrosion resistance and low density. However, the drawback of pure $ZrO_2$ is a low fracture toughness at room temperature. One of the most obvious tactics to cope with this problem is to fabricate a nanostructured composite material. Nanomaterials can be produced with improved mechanical properties(hardness and fracture toughness). The high-frequency induction heated sintering method takes advantage of simultaneously applying induced current and mechanical pressure during sintering. As a result, nanostructured materials can be achieved within very short time. In this study, W and $ZrO_2$ nanopowders are mechanochemically synthesized from $WO_3$ and Zr powders according to the reaction($WO_3+3/2Zr{\rightarrow}W+3/2ZrO_2$). The milled powders are then sintered using high-frequency induction heating within two minutes under the uniaxial pressure of 80MPa. The average fracture toughness and hardness of the nanostructured W-3/2 $ZrO_2$ composite sintered at $1300^{\circ}C$ are $540kg/mm^2$ and $5MPa{\cdot}m^{1/2}$, respectively. The fracture toughness of the composite is higher than that of monolithic $ZrO_2$. The phase and microstructure of the composite is also investigated by XRD and FE-SEM.

Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

  • Park, Jeong Soon;Choi, Young Hwan;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.545-553
    • /
    • 2016
  • The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition ($RT_{NDT}$). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

내저온열화 특성을 갖는 지르코니아/알루미나 복합세라믹의 마멸평가

  • Kim H.;Lee KY;Kim DJ;Lee MH;Seo WS
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.91-94
    • /
    • 2003
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear. Alumina and zirconia (3Y-TZP) are using in clinical application worldwide and there are many good test reports. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite having low temperature degradation-free character and high fracture tough . was developed and it leads the lower wear 3f polyethylene than alumina and zirconia. In the present study, in order to optimise the microstructure of low temperature degradation (LTD)-free zirconia/alumina composite for the best wear resistance of polyethylene, various compositions of (LTD)-free zirconia/alumina composites were fabricated, and the sliding wear of UHMWPE against these novel composites were examined and compared with that against alumina and zirconia ceramics used for total hip joint heads.

  • PDF

Effect of the Mold Temperatures on the Microstructure and Mechanical Properties of Low Pressure Die-Cast Product (저압주조품의 미세조직과 기계적성질에 미치는 금형온도의 영향)

  • Lee, Jeong-Keun;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.254-261
    • /
    • 1998
  • Microstructure and mechanical properties of the low pressure die-cast Al wheels were investigated by microscope, image analyzer, NDT (non-destructive test), and tensile test. The variation of SDAS (secondary dendrite arm spacing), porosity per unit area, quality grade, and tensile properties with the mold temperatures were examined. SDAS was gradually decreased with a decrease in temperature. However, the lowest value of porosity per unit area was observed at the mold temperature of $405^{\circ}C$ and the optimum mold temperature was found to be $405^{\circ}C$. Besides, from the observation of pore morphology, it was also found that the pore formation was mainly caused by shrinkage during solidification. The tensile strength, elongation, and impact toughness were markedly decreased, however the yield strength was nearly constant. The decrease of mechanical properties is attributed to the increase of porosity.

  • PDF

Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging (직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향)

  • Shin, Jung-Ho;Ryu, Young-Joo;Kim, Byung-Ok;Ko, In-Yong;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Effect of $Ta_2O_5$ Alloying on Low Temperature Degradation of 3 mol% Y-TZP ($Ta_2O_5$ 첨가가 3 mol% Y-TZP의 저온열화에 미치는 영향)

  • 김대준;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.630-638
    • /
    • 1992
  • Ta2O5 alloying into 3 mol% Y2O3-stabilized tetragonal ZrO2 polycrystals (3Y-TZP) increased the degradation during aging at 265℃ and the fracture toughness; both are determined by the amount of transformed m-ZrO2. It was proposed that the mechanism underlying the t→m transformation when aged at low temperatures is attributed to the reorientation of (Zzr'V ). complexes parallel to [111] lattice direction, which is accompanied by a relaxation of TZP lattice during annealing at low temperature. A small strain which results from the reorientation gives rise to a localized mechanical instability, thus lowering the nucleation barrier so that the t→m phase transformation (degradation) proceeds. The amount of transformed m-ZrO2 during aging becomes greater as the chemical free energy change related to the transformation, ΔGo, increases with increasing the Ta2O5 alloying content.

  • PDF