• 제목/요약/키워드: Low temperature storage material

검색결과 132건 처리시간 0.035초

식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성 (Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products)

  • 송현갑;노정근;문영모
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.

상온형 나트륨/유황 이차전지 개발 동향 (Development of Room Temperature Na/S Secondary Batteries)

  • 유호석;김인수;박진수
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

곶감의 지방산 및 아미노산 조성과 저장성 (The Compositions of Fatty Acid and Amino Acid and Storage Property in Dried Persimmons)

  • 문광덕;김종국;김준한
    • 한국식품저장유통학회지
    • /
    • 제4권1호
    • /
    • pp.1-10
    • /
    • 1997
  • This study was performed to determine chemical compositions of dried persimmons stored with plastic film at low temperature and the effect of film packaging on dried persimmons during storage. The moisture contents of dried persimmons were 30 to 36% and alcohol contents were 264 to 318 mg/100g and acetaldehyde contents were 25 to 40mg/100g. Total lipid contents of dried persimmon were 626 to 869mg/100g and oleic, palmitic, linolenic, and palmitoleic acid were major fatty acids in total lipids. Major amino acids were glutamic acid, arginine, cystine and aspartic acid. From the result of storage experiment, non-packed group was that hardness was high as decreased in moisture content. In case of film packed groups stored at 5$^{\circ}C$, self life was longer than non-packed and packed groups stored at room temperature. But, it need to develop available packing material and storage method.

  • PDF

Low-Temperature Storage of Immature (Green) North American Ginseng Seed for Fall Planting

  • Proctor John T.A.;Louttit Dean
    • Journal of Ginseng Research
    • /
    • 제30권2호
    • /
    • pp.78-81
    • /
    • 2006
  • Freshly harvested, immature (green) seeds of North American ginseng (Panax quinquefolius L.) were stratified for up to 3 years in plastic pails in controlled environment rooms at $5{\pm}1^{\circ}C$ for 9 months and then $21{\pm}2^{\circ}C$ for 3 months (Trt. 1, regular stratification), or continuously at $-2{\pm}0.2^{\circ}C$ (Trt. 2), or continuously at $3{\pm}0.2^{\circ}C$ (Trt. 3). During stratification at -2 and $3^{\circ}C$ embryos did not grow. On seeding in the field embryos grew rapidly and resultant seedlings were comparable to those from regularly stratified seed. Seedling emergence rate was acceptable at the industry expected rate of 68% after one year of storage, but not after two years storage when it declined to 17.5%. Seed rot was so severe in year 3 that no planting was carried out. Seedling and second year growth were similar at the three stratification temperatures; most importantly, root dry weight (economic yield) was similar. Low-temperature storage of freshly-harvested North American ginseng seed is an acceptable method for short-term retention of propagating material.

실리콘 서브 마운틴 기반의 LED 패키지 재료평가 및 신뢰성 시험 (Reliability Testing and Materials Evaluation of Si Sub-Mount based LED Package)

  • 김영필;고석철
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-10
    • /
    • 2015
  • The light emitting diodes(LED) package of new structure is proposed to promote the reliability and lifespan by maximize heat dissipation occurred on the chip. We designed and fabricated the LED packages mixing the advantages of chip on board(COB) based on conventional metal printed circuit board(PCB) and the merits of Si sub-mount using base as a substrate. The proposed LED package samples were selected for the superior efficiency of the material through the sealant properties, chip characteristics, and phosphor properties evaluations. Reliability test was conducted the thermal shock test and flux rate according to the usage time at room temperature, high-temperature operation, high-temperature operation, high-temperature storage, low-temperature storage, high-temperature and high-humidity storage. Reliability test result, the average flux rate was maintained at 97.04% for each items. Thus, the Si sub-mount based LED package is expected to be applicable to high power down-light type LED light sources.

수직다발관형 빙축열 탱크내 물의 응고과정시 열전달특성에 관한 연구 (An Experimental Study on the Heat Transfer Characteristics during the Freezing Process of Water in the Vertical Multi Tube Type Ice Storage Tank)

  • 김영기;임장순
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.95-105
    • /
    • 1998
  • In this study, basic design data which were required for development of highly efficient ice storage system with low temperature latent heat were experimentally obtained. The ice storage system considered in this study was the one that has been widly used in the developed country and called the ice-on-coil type. Using the system, the ice storage performance for various design parameters which were the flow direction and the inlet temperature of the secondary fluid was tested. In addition, the timewise variation of the interface profiles between the solid and the liquid were visualized, and the heat transfer characteristics of the Phase Change Material(PCM) in the ice storage tank were Investigated. During the freezing processes in the ice storage tank with several vertical tubes, decrease of the heat transfer area and the heat resistance of the ice layer made the increasing rate of ice packing factor(IPF) less. The total freezing energy for the upward flow of the secondary fluid was higher than that for the downward flow. The average ice storage efficiency for the upward flow of the secondary fluid was higher than that for the downward flow.

  • PDF

나노세공체 흡착제에 의한 수소 흡착 및 저장 (Adsorption and Storage of Hydrogen by Nanoporous Adsorbents)

  • 정성화;장종산
    • 공업화학
    • /
    • 제18권2호
    • /
    • pp.99-110
    • /
    • 2007
  • 21세기의 새로운 청정 에너지원으로 각광받고 있는 수소의 성공적인 활용을 위해 높은 저장 용량을 갖는 수소 저장체와 효과적인 수소 저장기술의 개발이 필요하다. 본 총설에서는 다양한 수소 저장 방법에 대해 간략히 요약하고 그 가운데 나노세공체를 이용한 저온 물리흡착에 의한 수소 저장기술의 현황에 대해 살펴보았다. 기존에 알려져 있는 고압의 압축 저장기술과 상온 고압의 수소저장 물질의 개발 이외에도 최근에는 높은 표면적과 큰 세공 부피를 갖는 나노세공체를 이용한 저온 물리흡착 방식이 개발 가능한 수소의 저장 기술의 하나로 활발히 연구되고 있다. 본 총설에서는 높은 수소 저장 용량을 위해 필요한 나노세공체의 특성을 요약하였으며 높은 표면적 및 미세 세공부피, 작은 세공 크기, 큰 정전기장 및 불포화 배위자리가 필요함을 알 수 있었다. 최근까지 보고된 나노세공체 흡착제에 의한 수소 저장 능력을 정리하였는데 현재까지 보고된 최고의 결과로는 액체 질소 온도($-196^{\circ}C$)의 약 80 기압에서 약 7.5wt%의 수소를 저장할 수 있다고 알려져 있다. 향후 지속적이고 새로운 나노세공체의 설계, 합성, 제조 및 수식에 대한 노력을 통해 수소에너지 저장에 활용될 수 있는 효과적인 수소 저장체 개발을 기대한다.

리튬이차전지용 Polyacenic Semiconductor Material의 전기화학적 특성

  • 박수길;박종은;;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 1998
  • During the past decade, substantial research effort has been directed into the development of rechargeable lithium batteries. Although some improvements in cycle life and efficiency have been achieved, the reversibility of the lithium electrode remains as a significant problem in aprotic solvent based electrolyte. The major problems limiting cycle life are short circuits resulting from growth of lithium dendrites, and macroscopic shape changes during the recharge process. As an anode material of lithium rechargeable battery, amorphous carbon materials have been studied extensively because of their high electrochemical performance. The polyacene materials prepared from phenol refine at relatively low temperature(550∼750$^{\circ}C$) show a highly Li-doped state up C$_2$Li state without liberation of Li cluster. So it has largely layered distance 4${\AA}$. The Li storage mechanism as well as the large hysterisis observed in the voltage-capacity profile of the amorphous carbone materials are still the subjects of controversy. We prepared each polyacene material various temperature and investigated electrochemical property. The mole ratio of [H]/[C] is 0.027∼0.015 range.

  • PDF

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.