• Title/Summary/Keyword: Low temperature oxidation

Search Result 587, Processing Time 0.03 seconds

Relization of Low Temperature Oxide Using Porous Silicon (다공질 실리콘을 이용한 저온 산화막의제조)

  • Ryu, Chang-U;Sim, Jun-Hwan;Lee, Jeong-Hui;Lee, Jong-Hyeon;Bae, Yeong-Ho;Heo, Jeung-Su
    • Korean Journal of Materials Research
    • /
    • v.6 no.5
    • /
    • pp.489-493
    • /
    • 1996
  • 다공질 실리콘층(Porous Silicon LayerLPSL)을 사용하여 저온 열산화 (50$0^{\circ}C$, 1시간)와 급속 열산화공정(rapid thermal oxidationLRTO)(115$0^{\circ}C$, 1분)을 통하여 저온 산화막을 제조하였다. 제조된 산화막의 특성을 IR흡수 스펙트럼, C-V 곡선, 절연파괴전압, 누설전류, 그리고 굴절률을 조사함으로써 알아보았다. 절연파괴전압은 2.7MV/cm, 누설전류는 0-50V 범위에서 100-500pA의 값을 보였다. 산화막의 굴절률은 1.49의 값으로서 열산화막의 굴절률에 근접한 값을 나타냈다. 이 결과로부터 다공질 실리콘층을 저온산화막으로 제조할 때, RTO공정이 산화막의 치밀화(densification)에 크게 기여함을 알 수 있었다.

  • PDF

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

MicrostructuraL Characteristics During Hydrogen Desorption of Mechanical Milled TiH2 (기계적 합금화된 TiH2의 수소방출에 따른 미세조직 특성)

  • Jung S.;Jung Hyun-Sung;Ahn Jae-Pyoung;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.199-204
    • /
    • 2006
  • We manufactured the metal hydrides of $(Ti_{0.88}Mg_{0.12})H_2$ using a very easy and cheap way that Ti-12%Mg blending powder was mechanically milled with liquid milling media such as isopropyl alcohol ($C_3H_8O$, containing oxygen) and hexane ($C_6H_{14}$, no oxygen) as hydrogen source. The $(Ti_{0.88}Mg_{0.12})H_2$ synthesized in isopropyl alcohol contained the high oxygen of 11.2%, while one in hexane had the low oxygen content of 0.7%. Such a difference of oxygen content affected the dehydriding behavior, phase transformation, and microstructural evolution at high temperature, which was investigated through X-ray diffraction and DSC measurements, and electron microscope observations.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (IV) - Mechanism and Application of LAM for Silicon Nitride Ceramics - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (IV) - 질화규소 세라믹의 레이저예열선삭 메커니즘 및 적용 -)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.40-44
    • /
    • 2010
  • Laser assisted machining (LAM) has been researched in order to machine the silicon nitride ceramics economically and effectively. LAM is an effective machining method by local heating of the cutting part to the softening temperature of the silicon nitride using laser beam. When silicon nitride ceramics is heated using a laser beam, the surface of silicon nitride ceramic is softened, oxidized and decomposed. And then surface hardness is decreased. Through machining in low viscosity and hardness conditions, silicon nitride was machined effectively and the life span of tool was increased. The plastic deformation was occurred due to softening of amorphous YSiAlON above $ 1,000^{\circ}C$. Transgranular fracture of ${\beta}-Si_3N_4$ was occurred when YSiAlON was not softened, but mostly intergranular fracture was occurred by the plastic deformation of softened YSiAlON.

Structural and Spectroscopic Investigation of Ceria Nanofibers Fabricated by Electrospinning Process

  • Hwang, Ah-Reum;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3338-3342
    • /
    • 2011
  • We fabricated ceria ($CeO_2$) nanofibers by applying a mixed solution of polyvinylpyrrolidone (PVP) and various concentrations of cerium nitrate hydrate ($Ce(NO_3)_3$) ranging from 15.0 to 26.0 wt % by the electrospinning process. Ceria nanofibers were obtained after calcining PVP/$Ce(NO_3)_3$ nanofiber composites at 873 and 1173 K. The SEM images indicated that the diameters of $CeO_2$ nanofibers calcined at 873 and 1173 K were smaller than those of nanofibers obtained at RT. As the amount of cerium increased, the diameter of $CeO_2$ nanofibers increased. XRD analysis revealed that the ceria nanofibers were in cubic form. TEM results revealed that the ceria nanofibers were formed by the interconnection of Ce oxide nanoparticles. The ceria nanofibers obtained at low concentrations of Ce (CeL) showed spotty ring patterns indicated that the ceria nanofibers were polycrystalline structure. And the ceria nanofibers obtained at high concentration of Ce (CeH) showed fcc (001) diffraction pattern. XPS study indicated that the oxidation of Ce shifted from $Ce^{3+}$ to $Ce^{4+}$ as the calcination temperature increased.

A Study on the Recovery of Zn from Electric Arc Furnace Dust by Carbon Reduction

  • Joo, Sung-Min;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Kyung-Hoon;Sung, Ghee-Woong;Kim, Jang-Su;Lee, Park-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.398-403
    • /
    • 2001
  • There is a potential usability of electric arc furnace(EAF) dust produced during the iron manufacturing process as a recycled resource, because valuable materials such as Zn, Pb and Fe are contained in it. In this study, metallic Zn was recycled from the fine electric arc furnace dust by a solid state reduction method using carbon at relatively low temperature. It was possible to recover metallic zinc by using of high vapour pressure of zinc with this reduction method. The feasibility of recycled zinc for cold bonded pellet(CBP) was investigated. The main composition of EAF dust were franklinite(ZnFe$_2$O$_4$), magnetite(Fe$_3$O$_4$) and zincite(ZnO), and Pb and Cl were completely removed by a heat treatment in oxidation environment. The reduction ratio increased as the solid carbon content increased, and it increased with decreasing of dust particle size and increasing of compaction pressure due to a increase of contact area.

  • PDF

Effect of Additives on Catalytic Activity in Thermal Catalytic De-NOx Process (Thermal catalytic de-NOX 공정에서 첨가제가 촉매의 활성에 미치는 영향에 관한 연구)

  • 이진구;김태원;최재순;김정호;이재수;장경욱;박해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • We sdudied effect of additives on catalytic activity in thermal catalytic de-NOx process which was composed of thermal reduction, catalytic reduction and catalytic oxidation stage. Pd-Pt/${\gamma}$-$Al_2O_3$ catalysts with the addition of transition metals(Co, Cu, Fe, Ni, W, Zn, Zr) and rare earth metals(Ce, Sr) were prepared by the conventional washcoating method. Those catalysts were characterized by CO pulse chemisorption, ICP, $N_2$ adsorption, SEM and XRD. The effect of catalyst additives on NOx removal for diesel emission was studied in thermal catalytic de-NOx process at reduction temperature(350~50$0^{\circ}C$), space velocity(5,000~20,000 $hr^{-1}$) and the engine load(0~120kW). The concentraton of CO, $CO_2$, NO and $NO_2$ in the exhaust gas increased with the engine load. On the other hand the concentration of $O_2$ decreased. The de-NOx activityof all prepared catalysts increased with respect to high CO and low $O_2$ level in the thermal reduction stage of the process. Insertion of Ce to Pt-Pd/${\gamma}$-$Al_2O_3$ catalyst showed the best activity of all the catalysts under these experimental conditions. De-NOx catalysts are effective to remove CO in addition to NOx in the catalytic reduction stage.

  • PDF

Characteristics of a-IGZO TFTs with Oxygen Ratio

  • Lee, Cho;Park, Ji-Yong;Mun, Je-Yong;Kim, Bo-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.341.1-341.1
    • /
    • 2014
  • In the advanced material for the next generation display device, transparent amorphous oxide semiconductors (TAOS) are promising materials as a channel layer in thin film transistor (TFT). The TAOS have many advantages for large-area application compared with hydrogenated amorphous silicon TFT (a-Si:H) and organic semiconductor TFT. For the reasonable characteristics of TAOS, The a-IGZO has the excellent performances such as low temperature fabrication (R.T~), high mobility, visible region transparent, and reasonable on-off ratio. In this study, we investigated how the electric characteristics and physical properties are changed as various oxygen ratio when magnetron sputtering. we analysis a-IGZO film by AFM, EDS and I-V measurement. decreasing the oxygen ratio, the threshold voltage is shifted negatively and mobility is increasing. Through this correlation, we confirm the effect of oxygen ratio. We fabricated the bottom-gate a-IGZO TFTs. The gate insulator, SiO2 film was grown on heavily doped silicon wafer by thermal oxidation method. a-IGZO channel layer was deposited by RF magnetron sputtering. and the annealing condition is $350^{\circ}C$. Electrode were patterned Al deposition through a shadow mask(160/1000 um).

  • PDF

CO Selox Reaction Using Y-type Zeolite Catalytic Membranes

  • Bemardo, P.;Algieri, C.;Barbieri, G.;Drioli, E.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • The production of CO-free hydrogen streams for feeding PEM-Fuel Cells using catalytic zeolite membrane reactors was analysed by means of selective oxidation. Tubular FAU (Na-Y) zeolite membranes, prepared by a secondary growth method and Pt-loaded, were used in a flow-through MR configuration. The catalytic tests were carried out at $200^{\circ}C$ and at different pressures with a simulated dry reformate shifted gas mixture ($H_2$ ca. 60%, CO 1 %, plus $O_2,\;N_2,\;CO_2$). The operative $O_2/CO$ stoichiometric equivalent feed ratio was ${\lambda}= 2$. These catalytic tests, reducing the CO concentration down to $10{\sim}50$ ppm, verified the possibility of MR integration after using a low temperature water-gas shift unit of a fuel processor to convert hydrocarbons into hydrogen-rich gas.