• Title/Summary/Keyword: Low temperature oxidation

Search Result 587, Processing Time 0.029 seconds

Advantages and Applications of Synthetic Greases

  • Kimura, Hiroshi;Onuki, Yuji
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.347-348
    • /
    • 2002
  • The numbers of synthetic greases have been developed with synthetic oils because of their excellent performance factors including thermal/oxidation stability, low-temperature fluidity and plastic compatibility. Long life under high-temperature condition and excellent low-temperature fluidity are required to serve as grease for bearings of engine room electrical component. As many plastics are used in place of metals for the purpose of weight saving, synthetic hydrocarbon grease is in use to avoid adverse effect on plastics. Other various special synthetic greases are also in use depending on specific requirements like conductivity and vacuum condition.

  • PDF

Failure Analysis of BGA Test Socket Pins (BGA 검사 소켓 핀의 불량 분석 연구)

  • Kim, Myung-Sik;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.497-502
    • /
    • 2008
  • BGA test sockets failed earlier than the expected life-time due to abnormal signal delay, shown especially at the low temperature ($-50^{\circ}C$). Analysis of failed sockets was conducted by EDX, AES, and XRD. A SnO layer contaminated with C was found to form on the surface of socket pins. The formation of SnO layer was attributed to the repeated Sn transfer from BGA balls to pin surface and instant oxidation of fresh Sn. As a result, contact resistance increased, inducing signal delay. Abnormal signal delay at the low temperature was attributed to the increasing resistivity of Sn oxide with decreasing temperature, as manifested by the resistance measurement of $SnO_2$.

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

Preparation of Pd Coated Hollow Fiber-Type La0.1Sr0.9Co0.2Fe0.8O3-δ Catalyst and Study on Removal Characteristics of Minute Oxygen (Pd 코팅 된 중공사형 La0.1Sr0.9Co0.2Fe0.8O3-δ 촉매의 제조 및 미량 산소 제거 특성 연구)

  • Jeong, Byeong Jun;Lee, Hong Ju;Kim, Min Kwang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.774-780
    • /
    • 2019
  • An efficient Pd-coated $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF-1928) catalyst for total oxidation of methane under landfill gas at low tmeperature has been developed. Synergism was observed between Pd coating and LSCF-1928 substrate. When Pd coating on LSCF-1928, we used electroless plating method and conformed characteristic of catalyst through TPR(Temperature Programmed Reduction) analysis, XRD(X-ray Diffraction) analysis, SEM(Scanning Electron Microscope). The results demonstrated that the Pd coated LSCF-1928 catalysts showed higher performance than non-Pd LSCF-1928. Pd coated LSCF-1928 had low total oxidation temperature of methane (< $475^{\circ}C$) which is lower than total oxidation temperature of methane about non-Pd LSCF-1928 catalysts (= $475^{\circ}C$). Also, $O_2$ conversion rate was higher than non-Pd LSCF-1928 at same temperature.

Cu Electrode Fabrication by Acid-assisted Laser Processing of Cu Nanoparticles and Application with Transparent·Flexible Electrode (구리 나노 입자에 산-보조 레이저 공정을 적용한 구리 전극 제작 공정 개발 및 투명·유연 전극으로 활용)

  • Jo, Hyeon-Min;Gwon, Jin-Hyeong;Ha, In-Ho;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.121-121
    • /
    • 2018
  • Copper is a promising electronic material due to low cost and high electrical conductivity. However, the oxidation problem in an ambient condition makes a crucial issue in practical applications. In here, we developed a simple and cost-effective Cu patterning method on a flexible PET film by combining a solution processable Cu nanoparticle patterning and a low temperature post-processing using acetic acid treatment, laser sintering process and acid-assisted laser sintering process. Acid-assisted laser sintering processed Cu electrode showed superior characteristics in electrical, mechanical and chemical stability over other post-processing methods. Finally, the Cu electrode was applied to the flexible electronics applications such as flexible and transparent heaters and touch screen panels.

  • PDF

Effect of the Substrate Temperature on the Copper Oxide Thin Films

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.71-71
    • /
    • 2010
  • Copper oxide thin films were deposited on the p-type Si(100) by r.f. magnetron sputtering as a function of different substrate temperature. The deposited copper oxide thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM and SE data show that the thickness of the copper oxide films was about 170 nm. AFM images show that the surface roughness of copper oxide films was increased with increasing substrate temperature. As the substrate temperature increased, monoclinic CuO (111) peak appeared and the crystal size decreased while the monoclinic CuO (-111) peak was independent on the substrate temperature. The oxidation states of Cu 2p and O 1s resulted from XPS were not affected on the substrate temperature. The contact angle measurement was also studied and indicated that the surface of copper oxide thin films deposited high temperature has more hydrophobic surface than that of deposited at low temperature.

  • PDF

Surface Analysis Study on ZIRLO Cladding Hulls Oxidized at Low Temperatures (저온 산화된 ZIRLO 피복관의 표면분석 연구)

  • Jeon, Min Ku;Choi, Yong Taek;Lee, Chang Hwa;Kang, Kweon Ho;Park, Geun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Surface oxidation behavior of ZIRLO (ZIRconium Low Oxidation) hulls was investigated using an X-ray photoelectron spectroscopy (XPS) technique. The effects of oxidation time (10-336 h at $500^{\circ}C$) and temperature ($400-700^{\circ}C$ for 10 h) were studied. Deconvolution results of the hulls oxidized at $500^{\circ}C$ revealed that a $ZrO_2$ phase appeared after 24 h (11.86%), and an increase in the $ZrO_2$ ratio was observed when the hulls were oxidized for 336 h (17.93%). On the other hand, the ZrO phase which employed 5.68% in the 10 h oxidized sample disappeared when the oxidation time increased to 24 h. The XPS results also showed that an increase in the oxidation temperature resulted in an increase in the ratio of ZrO, which increased from 0 to 5.68, 8.31, and 9.16% when the oxidation temperature increased from 400 to 500, 600, and $700^{\circ}C$, respectively. $ZrO_2$ phase was observed only in the sample that was oxidized at $700^{\circ}C$. The mechanism of ZrO formation was not conclusive, but it was suggested that a formation of hydroxide might have been accelerated at elevated temperatures leading to a formation of a $Zr(OH)_4$ phase. The relationship between the surface oxidation status of the hulls oxidized at $500^{\circ}C$ and their chlorination reaction feasibility was discussed, and it was suggested that the thickness of the oxide layer is an important parameter that determines the chlorination reaction feasibility.

Basic Study on the Recycling of Waste Tungsten Scraps by the Oxidation and Reduction Process (산화·환원법에 의한 폐텅스텐 스크랩의 재활용에 관한 기초연구)

  • Kim, Sang-Uk;Yun, Ji-seok;Kim, Tae-Wook;Cho, Bong-Hwi;Kim, In-Ho;Kim, Sang-Mu;Song, Chang-Bin
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.34-40
    • /
    • 2017
  • This study is carried out to obtain basic data regarding oxidation and reduction reactions, originated on the recycling of waste tungsten hard scraps by oxidation and reduction processes. First, it is estimated that the theoretical Gibbs free energy for the formation reaction of $WO_2$ and $WO_3$ are calculated as ${\Delta}G_{1,000K}=-407.335kJ/mol$ and ${\Delta}G_{1,000K}=-585.679kJ/mol$, from the thermodynamics data reported by Ihsan Barin. In the experiments, the oxidation of pure tungsten rod by oxygen is carried out over a temperature range of $700-1,000^{\circ}C$ for 1 h, and it is possible to conclude that the oxidation reaction can be represented by a relatively linear relationship. Second, the reduction of $WO_2$ and $WO_3$ powder by hydrogen is also calculated from the same thermodynamics data, and it can be found that it was difficult for the reduction reaction to occur at $1,027^{\circ}C$, in the case of $WO_2$, but it can happen for temperatures higher than $1127^{\circ}C$. On the other hand, $WO_3$ reduction reaction occurs at the relatively low temperature of $827^{\circ}C$. Based on these results, the reduction experiments are carried out at a temperature range of $500-1,000^{\circ}C$ for 15 min to 4 h, in the case of $WO_3$ powder, and it is possible to conclude that the reduction at $900^{\circ}C$ for 2h is needed for a perfect reduction reaction.

Kinetics of the Oxidation of Carbon Monoxide on NiO at Low Temperature (저온 일산화탄소의 산화반응속도론적 연구)

  • Choi, Jae-Shi;Kim, Keu-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 1974
  • The catalytic reaction between carbon monoxide and oxygen was investigated in the presence of catalysts which were specially treated by applying an annealing method at different monoxide and oxygen and at reaction temperatures in the region of partial pressures of carbon $40^{\circ}C$ to $95^{\circ}C$. The oxidation rate is highest on NiO annealed at low temperature in vacuum. The data has been correlated with the first order kinetics, and the activation energies from the Arrhenius equation are found to be 4Kcal/mole in the region of the experimental temperatures. The excess oxygen in NiO obtained from the decomposition of $NiCO_3$does not cause activation at $95^{\circ}C$. But NiO catalysts annealed again in vacuum display activation even at $40^{\circ}C$. The quantity of the excess oxygen in NiO surfaces seems to be the controlling factor in determining the rates of oxidation of carbon monoxide.

  • PDF

Preparation of Highly Dispersed Ru/$\alpha-Al_2O_3$ Catalyst for Preferential CO Oxidation (선택적 CO 산화 반응을 위한 Ru/$\alpha-Al_2O_3$ 촉매 고분산 제조 방법에 관한 연구)

  • Eom, Hyun-Ji;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.390-397
    • /
    • 2010
  • 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts are prepared by deposition-precipitation method for the preferential CO oxidation In order to investigate the effect of pH on the Ru dispersion and particle size, the pH of precursor solution is adjusted to between 5.5 and 9.5. 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH of 6.5 has high Ru dispersion of 17.9% and small particle size of 7.7nm. In addition, 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH 6.5 is easily reduced at low temperatures below $150^{\circ}C$ due to high dispersion of $RuO_2$ particle and shows high CO conversion over 90% in the wide temperature range between $100^{\circ}C$ and $160^{\circ}C$. Moreover, the deposition-precipitation is a feasible method to improve the Ru dispersion as compared to the impregnation method. The 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared by deposition-precipitation exhibits higher CO conversion than 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts prepared by impregnation due to higher metal dispersion and better reducibility at low temperature.