• Title/Summary/Keyword: Low temperature oxidation

Search Result 587, Processing Time 0.028 seconds

Low-temperature Aqueous Oxidation of Titanomagnetites: Changes in Magnetic Properties of Pseudo-single Domain Particles (위단지구 티탄자철석의 수성 저온산화에 따른 자성변화)

  • 석동우
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.147-156
    • /
    • 2001
  • Titanomagnetites, the primary magnetic mineral in submarine basalts, generally has undergone some degree of low temperature oxidation to cation-deficient titanomaghemites. Synthetic analogues of natural titanomaghemite have been prepared by the removal of iron mechanism employing a low-temperature aqueous oxidation method. Along with the low-temperature oxidation of titanomagnetite, magnetic properties of titanomagnetite change sensitively. The results show that as the degree of oxidation increases, the Curie temperature (Tc) increases from $166^{\circ}C$ to $400^{\circ}C$, saturation magnetization (Ms) at room temperature decreases from 126.30 kAlm (25.26 emu/g) to 16.55 kAlrn (3.31 emu/g) monotonously, and coercive force (Hc) and coercivity of remanence (Hcr) increase from 6.13 kAlm (77 Oe) and 23.24 kAlm (292 Oe) to 38.83 kNm (488 Oe) and 47.03 kAlm (591 Oe), respectively. Low field susceptibility (X) decreases from $2023{\times}10^{-6}SI$ to $84{\times}10^{-6}S1$. Based on the results of this study, it is interpreted that the NRM intensity variations of the oceanic crust of presetnt day to 30 Ma is due to the formation of titanomahemites of various degree of oxidation by the low-temperature aqueous oxidation of titanomagnetite, while the magnetic intensity changes of the oceanic crust older than 30 Ma is presumably caused by the combined effect of the formation of titanomaghemites and subsequent inversion of titanomagnemites. DetaileJ causes of the variations of NRM intensity of the oceanic crust may be revealed by systematic studies of the oceanic-floor basalts in the future.

  • PDF

Oxide Layer Growth in High-Pressure Steam Oxidation (고압 수증기 내에서 산화막 형성에 관한 연구)

  • 박경희;안순의;구경완;왕진석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.735-738
    • /
    • 2000
  • This paper shows experimentally that oxide layer on the p-type Si-substrate can grow at low temperature(500$^{\circ}C$∼600$^{\circ}C$) using high pressure water vapor system. As the result of experiment, oxide layer growth rate is about 0.19${\AA}$/min at 500$^{\circ}C$, 0.43${\AA}$/min at 550$^{\circ}C$, 1.2${\AA}$/min at 600$^{\circ}C$ respectively. So, we know oxide layer growth follows reaction-controlled mechanism in given temperature range. Consequently, granting that oxide layer growth rate increases linearly to temperature over 600$^{\circ}C$, we can expect oxide growth rate is 5.2${\AA}$/min at 1000$^{\circ}C$. High pressure oxidation of silicon is particularly attractive for the thick oxidation of power MOSFET, because thermal oxide layers can grow at relatively low temperature in run times comparable to typical high-temperature, 1 atm conditions. For higher-temperature, high-pressure oxidation, the oxidation time is reduced significantly

  • PDF

High Quality Ultrathin Gate Oxides Grown by Low-Temperature Radical Induced Oxidation for High Performance SiGe Heterostructure CMOS Applications (저온 래디컬 산화법에 의한 고품질 초박막 게이트 산화막의 성장과 이를 이용한 고성능 실리콘-게르마늄 이종구조 CMOS의 제작)

  • 송영주;김상훈;이내응;강진영;심규환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.765-770
    • /
    • 2003
  • We have developed a low-temperature, and low-pressure radical induced oxidation (RIO) technology, so that high-quality ultrathin silicon dioxide layers have been effectively produced with a high reproducibility, and successfully employed to realize high performace SiGe heterostructure complementary MOSFETs (HCMOS) lot the first time. The obtained oxide layer showed comparable leakage and breakdown properties to conventional furnace gate oxides, and no hysteresis was observed during high-frequency capacitance-voltage characterization. Strained SiGe HCMOS transistors with a 2.5 nm-thick gate oxide layer grown by this method exhibited excellent device properties. These suggest that the present technique is particularly suitable for HCMOS devices requiring a fast and high-precision gate oxidation process with a low thermal budget.

Analysis and Measurement on Failure Behavior off Scales by Acoustic Emission Method (Scale 파괴거동 측정 및 해석)

  • Choi Jin Won;TANIGUCHI S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.330-331
    • /
    • 2005
  • It was found possible to evaluate the temperature at which major scale failure takes place during cooling by installing a most modem acoustic emission(AE) analytical system. Ultra low carbon steel and low carbon steels containing a few minor alloying elements were oxidized in air at 900, 1050 and $1200^{\circ}C$ for 20 min, and then cooled in vacuum at 30, 70 and $110^{\circ}C/min$. The significance of the present research is the evaluation of the spallation temperature and thus the calculation of apparent thermal stress for scale spallation using the difference between oxidation temperature and spallation temperature. They were assessed as 0.22 to 0.68, 0.45 to 1.80, and 0.65 to 1.95 GPa for oxidation at 900, 1050 and $1200^{\circ}C$, respectively.

  • PDF

Study on the Development of Recuperative Thermal Oxidation System for the Volatile Organic Compounds (휘발성 유기물질의 고효율 열산화 시스템 개발 연구)

  • Hyun, Ju-Soo;Lee, Si-Hyun;Lee, Jong-Sup;Min, Byoung-Moo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.225-230
    • /
    • 2004
  • Volatile organic compounds (VOCs) are low calorific value gases (LCVG) emitted from chemical processes such as painting booth, dye works and drying processes etc. Characteristics of VOCs are low calorific values less than 150 kcal/$m^3$, high activation energy for ignition and low energy output. These characteristics usually make combustion unstable and its treatment processes needs high-energy consumption, The cyclone combustion system is suitable for LCVG burning because it can recirculate energy through a high swirling flow to supply the activation energy for ignition, increases energy density to make a combustion temperature higher than usual swirl combustor and also increases mixing intensity, This research was conducted to develop optimized cyclone combustion system for thermal oxidation of VOCs. This research was executed to establish the effect of swirl number with respect to the combustion temperature and composition of exhausted gas in the specific combustor design.

  • PDF

Oxidation Behaviors of SiCf/SiC Composites Tested at High Temperature in Air by an Ablation Method

  • Park, Ji Yeon;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Pouchon, Manuel
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.498-503
    • /
    • 2018
  • Using the thermal ablation method, the oxidation behavior of $SiC_f/SiC$ composites was investigated in air and in the temperature range of $1,300^{\circ}C$ to $2,000^{\circ}C$. At the relatively low temperature of $1,300^{\circ}C$, passive oxidation, which formed amorphous phase, predominantly occurred in the thermal ablation test. When the oxidation temperature increased, SiO (g) and CO (g) were formed by active oxidation and the dense oxide layer changed to a porous one by vaporization of gas phases. In the higher temperature oxidation test, both active oxidation due to $SiO_2$ decomposition on the surface of the oxide layer and active/passive oxidation transition due to interfacial reaction between oxide and base materials such as SiC fiber and matrix phase simultaneously occurred. This was another cause of high temperature degradation of $SiC_f/SiC$ composites.

Prediction Modeling of Unburned Hydrocarbon Oxidation in the Exhaust Port of a Propane-Fueled SI Engine (프로판 엔진의 배기 포트에서 탄화수소 산화 예측을 위한 모델링)

  • 이형승;박종범;최회명;민경덕;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, a numerical simulation was performed with 3-dimensional flow model and oxidation mechanism optimized for port oxidation. To predict the exhaust and oxidation process with consideration of flow, mixing, and temperature, 3-dimensional flow model and HC oxidation model were used with a commercial computational program, STAR-CD. The flow model were with moving grid for valve motion, which could predict the change of flow field with respect to valve lift. Optimization was performed to predict the HC oxidation with temperature range of 1200~1500K, low HC and oxygen concentration, existence of intermediate species, as typical in port oxidation. The constructed model could predict the port oxidation process with oxidation degree of 14~48% according to the engine operation conditions.

  • PDF

Low Temperature Thermal Oxidation using ECR Oxygen Plasma (ECR 산소 플라즈마를 이용한 저온 열산화)

  • 이정열;강석원;이진우;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.68-77
    • /
    • 1995
  • Characteristics of electron cyclotron resonance (ECR) plasma thermal oxide grown at low-temperature have been investigated. The effects of several process parameters such as substrate temperature, microwave power, gas flow rate, and process pressure on the growth rate of the oxide have been also investigated. It was found that the plasma density, reactive ion species, is strongly related to the growth rate of ECR plasma oxied. It was also found that the plasma density increases with microwave power while it decreases with decreasing O2 flow rate. The oxidation time dependence of the oxide thichness showed parabolic characteristics. Considering ECR plasma thermal oxidation at low-temperature, the linear as well as parabolic rate constants calculated from fitting data by using the Deal-Grove model was very large in comparison with conventional thermal oxidation. The ECR plasma oxide grown on (100) crystalline-Si wafer exhibited good electrical characteristics which are comparable to those of thermal oxide: fixed oxide charge(N$_{ff}$)= 7${\times}10^{10}cm^{-2}$, interface state density(N$_{it}$)=4${\times}10^[10}cm^{-2}eV^{-1}$, and breakdown field > 8MV/cm.

  • PDF

The Effect of Control of Low Temperature Oxidation using DME-gasoline Fuel Mixture on the HCCI Combustion (저온산화반응 제어가 DME-가솔린 혼합연료의 HCCI 연소에 미치는 영향)

  • Park, Youngjin;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of the study is to investigate the ideal manner and ratio to inject gasoline and DME simultaneously into intake port, and moreover to confirm the characteristics of combustion and emission of engine. Experimental conditions are 1200 rpm, compression ratio 8.5, intake air temperature (383 K). Internal cylinder pressure was collected to confirm the characteristics of combustion in order to calculate the heat release rate in the cylinder. In addition, HORIBA (MEXA 7100) which was possible analyzing emissions (NOx, CO, HC) was used. Vanguard gasoline engine (23HP386447) was used in this experiment. The result show that fuel design (DME-Gasoline) leads to the decrease of low temperature heat release, which is a benefit for higher-load on the HCCI engine. Also, IMEP and the indicated thermal efficiency increase with combustion-phasing retard, and these observations can be explained by considering the control of low temperature oxidation of DME.

Effects of Composition and Temperature on the Descaling Characteristics in Si Containing Steel (Si 첨가강의 Descaling 특성에 미치는 강조성 및 가열온도의 영향)

  • Choi J. W.;Kwon S. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.277-284
    • /
    • 2004
  • Low carbon steels containing Si of up to $1.2\;wt\%$ were oxidized in air at 1373 K and 1523 K, i.e. below and above the eutectic temperature of FeO and $Fe_2SiO_4$. The influence of a impurity element, S on behavior of scale formation during oxidation was investigated by using $M\"{o}chssbauer$ spectroscopy and EDS. This allowed establishment of an interface oxidation model of Si-added steel depending on temperature and an impurity element. A compound of FeO and FeS was formed in the scale/matrix interface of low carbon steels containing S of up to $0.03\;wt\%$ oxidized above 1213 K of the eutectic temperature. This was flat formed between $Fe_2SiO_4$ nodules along the scale/matrix interface without selective oxidation. It is due to low viscosity and high wettability of the compound of FeO and FeS in liquid. Conventional metallographic examinations revealed that roughness of the scale/matrix interface in Si-added steels became flat as the content of S increased. It was independent of oxidizing temperature and Si content. Effects of oxidizing temperature and an impurity element content on descaling characteristics in Si-added steels were evaluated by using a hydraulic descaling simulator. Good descaling characteristics was attributable to this flatness of the scale/matrix interface.

  • PDF