• Title/Summary/Keyword: Low temperature environment

Search Result 1,839, Processing Time 0.025 seconds

Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate (단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성)

  • Cho, Sang-Hyun;Oh, Kwang-Chul;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

Women's Comfort Temperature Range and Dynamic Temperature Change for Maintaining Thermal Comfort in Low Temperature Environment (저온환경에서 여성 온열쾌적성 유지를 위한 쾌적온도범위 및 동적 온도변화 연구)

  • Kim, Soyoung;Lee, Okkyung;Lee, Heeran
    • Fashion & Textile Research Journal
    • /
    • v.22 no.6
    • /
    • pp.853-861
    • /
    • 2020
  • Various types of clothing are being developed to boost thermal comfort during cold winters along with research on change of body temperature when heating is applied. There is a noticeable behavioral difference by gender when using heating panels in a cold environment; however, research on women has been insufficient. This study find a temperature range that provides sustainable thermal comfort in a low temperature environment by observing temperature and change of temperature when subjects are classified according to physical activities or cold sensitivities. For the study results, 8 women in their 20s were subjected to experiment in a low temperature environment for 75 minutes (sitting position: 30 min., running: 15 min., and sitting position: 30 min.). Subjects were asked to turn on/off the heating panel freely to analyze the range of comfortable temperature and clothing microclimate; in addition, skin temperature and heating panel temperature were measured and analyzed at 9 points. As a result, temperature at which subjects turn on and off the heating panel indicated a statistically meaningful difference between the cold sensitivity group depending on exercise or non-exercise. The range of comfortable abdomen temperature was wider than the lower back and was significantly reduced when the subject was running. The range of comfortable temperature was also largest for the heating panel temperature, microclimate, and skin temperature in suggesting that adequate adjustment will be required depending on the surrounding environment or movement of the wearer.

Characterization of Indoor Temperature and Humidity in Low-income Residences over a Year in Seoul, Korea

  • Lee, Daeyeop;Lee, Kiyoung;Bae, Hyunjoo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.184-193
    • /
    • 2017
  • People spend the majority of their time in indoor environments. Maintaining adequate indoor temperature and humidity is necessary to support health and improve quality of life. However, people with low incomes can be vulnerable because they may not be able to use effective cooling and heating systems in their homes. In this study, the indoor temperature and humidity in low-income residences over a year in Seoul, Korea was characterized. Indoor temperature and humidity were measured in three types of homes (12 rooftop residences, 16 basement residences, and 18 public rental apartments) occupied by low-income residents. Both differed significantly among the three types of residence, particularly during the summer and winter seasons. A regression model between indoor and outdoor temperature detected a heating threshold at $3.9^{\circ}C$ for rooftop residences, $9.9^{\circ}C$ for basement residences, and $17.1^{\circ}C$ for public rental apartments. During tropical nights and cold-wave advisory days, rooftop residences showed the most extreme indoor temperatures. This study demonstrates that people living in rooftop residences could be at risk from extreme hot and cold conditions.

A Research on Attachment Strength of Self-Adhesive Waterproofing Sheet in Low-Temperature Environment (저온환경에서 자착형 방수시트의 부착성능에 관한 연구)

  • An, Ki-Won;Park, Wan-Goo;Heo, Neung-Hoe;Kim, Yun-Ho;Park, Jin-Sang;Oh, Sang-keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.27-28
    • /
    • 2012
  • This study is to low-temperature in using self-adhesive waterproofing sheet. Using self-adhesive waterproofing sheet is very comfortable in a waterproofing construction site. However, when self-adhesive waterproofing sheet is constructed from a low-temperature environment, there has been a attachment strength shortage. Therefore, this study on the attachment strength of self-adhesive waterproofing sheet is to investigate the low-temperature in the environment.

  • PDF

Corrosion Behaviors of Rebar in Low Temperature Mortar with Chloride and Nitrite (염화물 및 아질산염을 사용한 저온환경하 모르타르내 철근의 부식특성)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.218-219
    • /
    • 2017
  • In order to examine the possibility of practical at low-temperature environment curable cement mortar with chloride and nitrite as cold resistance admixture for rebar corrosion prevention. As a result, chloride was used using nitrite complex in low temperature environment and corrosion performance of rebar was improved and mortar strength was promoted. The ratio of nitrite than chloride applied more than twice, corrosion of the reinforcing bars will not occur even in low temperature environment, cement hydration reaction will be promoted and mortar will prevent freezing damage.

  • PDF

Studies on Growth Responses and Yields of Panax ginseng C. A. Meyer Grown under Hydroponic Culture with different Temperatures and Growth Stages (온도 및 생육시기에 따른 수경재배 인삼의 생장특성과 수량에 관한 연구)

  • Lee, Gyeong-A;Chang, Yoon-Kee;Park, Seong-Yong;Kim, Gyeong-Ae;Kim, Sun-Ho;Song, Beom-Heon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.184-189
    • /
    • 2012
  • This study was carried out to have the basic and applied informations relating to increase the productivity and quality of ginseng. 2 years-old ginseng was cultivated under hydroponic culture with the controlled environment conditions in a greenhouse. Major growth characters and yields were investigated with two different temperatures and several growth stages. The plant height and stem diameter were higher at low temperature than those at high temperature. They were not clearly different with six different growth stages. The root length was not clearly different between two temperatures; however it was continuously grown from June until August. The root diameter was higher at low temperature than that at high temperature. It was rapidly increased from June until August. The length, width, and area of leaf were higher at low temperature than those at high temperature. The fresh and dry weights of different plant tissues were also heavier at low temperature than those at high temperature. The moisture content of ginseng root was continuously decreased from June until August. The yield of ginseng was higher at low temperature compared to that at high temperature. The cultivating conditions in hydroponic culture of ginseng, especially temperature, would be an important factor to have better growth and production.

A Study on the Development of Special Materials for Liquidity Improvement Refill Applicable to Poor Ground Conditions in Low Temperature Environment (저온환경 불량한 지반조건에 적용 가능한 유동성 개량 되메움을 위한 특수재료 개발에 관한 연구)

  • Jin Chun Kim;Byung Sun Yoo;Hee Jin Kang;Seok Hyun Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this study is to develop a fluidity-improved refilling material that satisfies smooth construction and long-term durability in a low-temperature environment using special materials and field soil as a refilling material to develop technology for high-speed installation of long-term non-traditional pipelines on poor ground containing a large amount of organic soil in a low-temperature environment. To this end, a special cement material was developed, and an indoor test was conducted to determine the construction performance and durability of the fluidity improved refilling material mixed with the developed special material and field soil to meet the quality standards for field construction. The construction quality standard items of fluidity improved refill materials were set to meet the CLSM (ACI 229R-13) standard suggested by the American ACI (America Concrete Institute). In addition, in order to understand the applicability in a low-temperature environment, the test was performed with the same items at low temperature and compared with the indoor test results at room temperature.

Effects of Low and Alternated Temperature Treatments on Quality of Oak Mushroom in Sawdust Culture (표고 톱밥 재배에서 저온 및 변온 처리가 표고 품질에 미치는 영향)

  • Park, Kyoung-Sub;Son, Jung-Eek;Yoon, Gap-Hee
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.43-44
    • /
    • 2001
  • Recently the sawdust culture of Lentinus edodes(Berk.) has been gradually extended replacing the log cultivation in Korea. It is indeed able to reduce the use of log and cultivation period in controlled facilities, but is not yet able to produce the high-quality mushroom. The objectives of this study were to examine the effects of low and alternated temperature treatments during the fruiting period on the quality of oak mushroom. At low temperature treatments of 1$^{\circ}C$ and 10$^{\circ}C$, the crack, lightness, hardness, and other characteristics for the high-quality oak mushroom were not improved. However, the crack, brightness, and hardness of cap were increased at alternated temperatures of 5-10$^{\circ}C$ than the other temperature treatments. In conclusion, the alternated temperature treatments were more effective than the low temperature treatment for improving the indices of high-quality oak mushroom such as the crack, brightness and hardness of cap.

  • PDF

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments (Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동)

  • Heesan Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography

  • Park, Eunsoo;Hong, Suk-Ju;Lee, Ah-Yeong;Park, Jongmin;Cho, Byoung-Kwan;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • Purpose: This study was performed to evaluate the feasibility of using an infrared thermography technique for phenotype analysis of pepper seedlings exposed to a low-temperature environment. Methods: We employed an active thermography technique to evaluate the thermal response of pepper seedlings exposed to low-temperature stress. The temperatures of pepper leaves grown in low-temperature conditions ($5^{\circ}C$, relative humidity [RH] 50%) for four periods (6, 12, 24, and 48 h) were measured in the experimental setting ($23^{\circ}C$, RH 70%) as soon as pepper seedling samples were taken out from the low-temperature environment. We also assessed the visible images of pepper seedling samples that were exposed to low-temperature stress to estimate appearance changes. Results: The greatest appearance change was observed for the low-temperature stressed pepper seedlings that were exposed for 12 h, and the temperature from these pepper seedling leaves was the highest among all samples. In addition, the thermal image of low-temperature stressed pepper seedlings for 6 h exhibited the lowest temperature. Conclusions: We demonstrated that the leaf withering owing to the water deficiency that occurred under low-temperature conditions could induce an increase in temperature in plant leaves using the infrared thermography technique. These results suggested that the time-resolved and averaged thermal signals or temperatures of plants could be significantly associated with the physiological or biochemical characteristics of plants exposed to low-temperature stress.