• Title/Summary/Keyword: Low temperature burning

Search Result 63, Processing Time 0.03 seconds

A Case Study on Fire Investigation for a Wood-Burning Stove in an Idyllic House (전원주택의 벽난로와 관련된 화재사례의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.119-128
    • /
    • 2015
  • A fire broke out in a working wood-burning stove and destroyed an idyllic house about two years after it was built. This study analyzed data provided through the court by the fire station, police station, fire insurance investigation agency, house construction company, and wood-burning stove maker Based on the fire pattern of low-temperature long-term ignition that remained in the studs, the fire was found to be caused by the conduction of heat in the fire box to the studs of the wall next to the wood-burning stove. A fire simulation showed that the low-temperature long-term ignition of the studs next to the wood-burning stove occurred because a hole was not made for ventilation in the chimney.

Coolant Effect on Gas Generator Propellant (가스발생기용 추진제에 대한 냉각제 효과)

  • Baek Gookhyun;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • The effect of coolants has been studied on the burning properties of low burning rate HTPB/AP composite propellant containing Oxamide or Melamine as coolant for the gas generator. With increasing the content of coolant, the burning rate and the flame temperature could be lowered and the effect on flame temperature was about the same for two coolants. However due to the different thermal decomposition properties of coolant, the burning rate of Melamine propellant was found to abnormally decrease if $200{\mu}m$ AP was partially replaced with $6{\mu}m$ AP.

Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells

  • Roh, Hyun-Seog;Jun, Ki-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.153-156
    • /
    • 2009
  • Low temperature methane steam reforming to produce $H_2$ for fuel cells has been calculated thermodynamically considering both heat loss of the reformer and unreacted $H_2$ in fuel cell stack. According to the thermodynamic equilibrium analysis, it is possible to operate methane steam reforming at low temperatures. A scheme for the low temperature methane steam reforming to produce $H_2$ for fuel cells by burning both unconverted $CH_4$ and $H_2$ to supply the heat for steam methane reforming has been proposed. The calculated value of the heat balance temperature is strongly dependent upon the amount of unreacted $H_2$ and heat loss of the reformer. If unreacted $H_2$ increases, less methane is required because unreacted $H_2$ can be burned to supply the heat. As a consequence, it is suitable to increase the reaction temperature for getting higher $CH_4$ conversion and more $H_2$ for fuel cell stack. If heat loss increases from the reformer, it is necessary to supply more heat for the endothermic methane steam reforming reaction from burning unconverted $CH_4$, resulting in decreasing the reforming temperature. Experimentally, it has been confirmed that low temperature methane steam reforming is possible with stable activity.

A Study on Combustion Characteristics of wood pellets (목재 펠릿의 연소특성에 관한 연구)

  • Sim, Bong Seok;Kim, Hyouck Ju;Park, Hwa Choon;Kim, Jong Jin;Choi, Kyu Sung;Kang, Sae Byul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.104.1-104.1
    • /
    • 2010
  • We investigated combustion characteristics of wood pellets in a combustion equipment with adjusting amount of flue gas. Maximum temperature in a combustion chamber was $850^{\circ}C$. Higher heating Value of a domestic wood pellet tested is 19.1 MJ/kg and water content was 8.3%. Amount of flue gas causes big effect on burning characteristics in $450{\sim}600^{\circ}C$. Wood pellet does not burn in low temperature atmosphere less than $450^{\circ}C$ and low flue gas flow rate. We made burning the pellet that is made in Korea, USA, Chile and Canada. Color of foreign pellets are bright brown and they made by mainly sawdust. Korean pellet is a dark brown color because it contains bark. There are some differences in the result of elementary analysis and technical analysis. According to the result of burning experiment, burning times of each countries's pellet are similar.

  • PDF

Mineral Phase and Microstructure Behaviors on Burning Condition of Domestic Low-grade Limestone (국내 저품위 석회석의 소성조건에 따른 광물상 및 미세구조 거동)

  • Cho, Jin Sang;Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Kye-Hong;Ahn, Ji-Whan;Yeon, Kyu-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.88-96
    • /
    • 2014
  • Natural hydraulic lime (NHL) is produced by burning a form of low-grade limestone containing silica and alumina which, above certain temperatures, combine with calcium oxide. The resulting silicates and aluminates impart hydraulic properties to the product. This study aims to determine the calcined characteristics of NHL using domestic low-grade limestone with maximized hydraulic properties. Six types of low-grade limestone containing $SiO_2$ were selected and experiments were carried out with different burning temperatures and holding times. The burning temperature and holding time as the most suitable burning conditions were $1,200^{\circ}C$ to $1,300^{\circ}C$ and 3 to 7 h, respectively, for the manufacturing of NHL from domestic low-grade limestone. These results demonstrate the feasibility of NHL using domestic low-grade limestone to produce NHL.

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

On the effect of filters for the design of solid propellant gas generators (고체추진제 가스발생기 설계를 위한 필터 효과에 대한 고찰)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2524-2527
    • /
    • 2007
  • Solid propellant gas generators (SPGG) play a role as a turbopump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start. For such a purpose, the propellants should burn with a relative low flame temperature and the combustion gas should not contain corrosive constituents such as chlorine compounds. In accordance with these requirements, stabilized AN-based propellants have been usually used as the most appropriate oxidizer for propellant compositions. However, the burning area of the propellant intends to increase to satisfy the required mass flux because of its low burning rate. Consequently the burning area incensement brings on the SPGG size augmentation. A flow restriction such as filters is applied to decrease the SPGG size by rising up the combustion pressure resulting in increasing the burning rate. The feasibility of the size reduction of SPGG by the employment of filters have been studied. The preliminary results of this study show that the considerable reduction of SPGG size would be achievable just by installing a filter with relatively high pressure loss coefficient.

  • PDF

The Effect of Graphite Addition and Pouring Temperature on the Coating State in Vaccum Process (감압조형시 흑연첨가 및 주입온도가 피복상태에 미치는 영향)

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.544-551
    • /
    • 1997
  • We tried to improve the coating capability of the coating material using an additive(hexagonal cystalline graphite) of 2%, 3%, 4% and 6% under various pouring temperature for the easy isolation of sand and coating material from the final product. As a result in case of using a 2% and 3% additive generally no burning state has been occurred under the low pouring temperature, but it has been gradually increased with the pouring temperature. On the other hand in case of using a 4% and 6% additive there has been no burning state through out the whole pouring temperature. From this result we could see that the best state of the final product without sand and coating material could generally be obtained if 4% and/or 6% of the crystalline graphite and the pouring temperature of 140$0^{\circ}C$$\pm$5$^{\circ}C$ would be used.

  • PDF

Characteristics of Resistant Lines to High-Temperature Injury in Ginseng (Panax ginseng C. A. Meyer)

  • Lee, Joon-Soo;Lee, Jang-Ho;Ahn, In-Ok
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This experiment was conducted to examine ginseng lines resistant and susceptible to high-temperature injury and to investigate characteristics of the selected lines: leaf burning phenomenon, chlorophyll content, quantum yield, and maximum light interception rate. The leaf burning phenomenon incidence rates of the resistant lines Yunpoong, high-temperature injury resistance (HTIR)1, HTIR2, and HTIR3 were low: 5.8%, 3.6%, 4.0%, and 1.9%, respectively. Resistance of the susceptible lines Chunpoong, high-temperature injury susceptible (HTIS)1, and HTIS2 was high: 58.5%, 23.2%, and 21.7%, respectively. The chlorophyll content (SPAD value) of the resistant lines Yunpoong, HTIR1, HTIR2, and HTIR3, which were exposed to high temperatures and intense light, remained as high at 24.8, 27.9, 24.9, and 30.6, respectively, but that of the susceptible lines Chunpoong, HTIS1, and HTIS2 was low at 21.0, 21.1, and 20.1, respectively. During the summer season, the quantum yield of the resistant lines (Yunpoong, HTIR1, HTIR2, and HTIR3) changed little, but that of the susceptible lines (Chunpoong, HTIS1, and HTIS2) changed dramatically. The maximum light interception rate (Fm/Fv value) for the resistant lines (Yunpoong, HTIR1, HTIR2, and HTIR3) was as high as 0.848, 0.794, 0.805, and 0.813, respectively, while that of the susceptible lines (Chunpoong, HTIS1, and HTIS2) was 0.678, 0.642, and 0.717, respectively. Based on these results, the high-temperature injury-resistant lines seemed to be less susceptible to high light, even at high temperatures. Future studies on red ginseng quality and its active ingredients in resistant ginseng lines and field experimentation will be conducted to verify the potential of the resistant lines.

Experimental Study on the Suppression of low Frequency Unstable Burning Occurred in a Gas Generator Using Bundle Cylindrical Grain (다발 원통형 그레인을 사용한 가스발생기의 저주파 연소불안정 소멸에 대한 실험적 연구)

  • Sung Hong-Gye;Byun Jong-Ryul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • Untypical unstable burning with very low frequency was observed at firing test of a gas generator using bundle cylindrical grain. The pressure unbalance between inside and outside of cylindrical grain brought such a low unstable burning. The grains were radially holed so that the high pressure gas inside of grain could quickly moved outward of gain, resulting dissipation of the pressure unbalance However too many holes were required to let the burning be stable for all operation regime from low to high temperature of grain and resultantly deteriorate the Progressive increase of gas amount produced by a gas generator. So another idea using grids located both sides of a bundle grain was applied to dissipate actively large vorticities enhanced by unbalance pressure distribution in a combustor. Finally stable burning with progressively increase of gas was established by application of 5${\times}$5 grid slightly away bundle grain to move bundle gain freely in case pressure unbalance were occurred inside of combustor.