• Title/Summary/Keyword: Low swirl

Search Result 156, Processing Time 0.023 seconds

DEVELOPMENT OF A SIMPLE CONTROL ALGORITHM FOR SWIRL MOTOR CONTROLLER

  • Lee, W.T.;Kang, J.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • This paper describes a simple proportional and integral control algorithm for a swirl motor controller and its application. The control algorithm may be complicated in order to have desired performance, such as low steady state errors, fast response time, and relatively low overshoot. At the same time, it should be compact so that it can be easily implemented on a low cost microcontroller, which has no floating-point calculation capability and low computing speed. These conflicting requirements are fulfilled by the proposed control algorithm which consists of a gain scheduling proportional controller and an anti-windup integral controller. The mechanical friction, which is caused by gears and a return spring, varies very nonlinearly according to the angular position of the system. This nonlinear static friction is overcome by the proportional controller, which has a two-dimensional look up gain table. It has error axis and angular position axis. The integral controller is designed not only to minimize the steady state error but also to avoid the windup effect, which may be caused by the saturation of a motor driver. The proposed control algorithm is verified by use of a commercial product to prove the feasibility of the algorithm.

The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine (I) (와류실식 소형 디젤 기관의 연소실 형상이 기관 성능에 미치는 영향(I))

  • Ra, J.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 1998
  • The purpose of this study is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area and its angle, the depth and shape of the piston top cavity(main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load, by the depth of the piston top cavity at the low speed and load. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions.

  • PDF

Dynamics of Coaxial Swirl Injectors in Combustion Environment (연소 조건하의 동축형 분사기의 동적 특성 고찰)

  • Seo Seonghyeon;Han Yeoung-Min;Lee Kwang-Jin;Kim Seung-Han;Seol Woo-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.282-287
    • /
    • 2004
  • Unielement combustion tests were conducted using coaxial bi-swirl injectors. Major experimental parameters were a recess length and a fuel-side swirl chamber. Combustion efficiency mainly depends on a mixing mechanism for the present coaxial swirl injectors. Low-frequency pressure excitations around 200Hz were observed for all injectors. However, dynamic behaviors considerably differ for an external and an internal mixing case controlled by a recess length. The internal mixing induces mixture to be biased at a specific frequency in a mass flow rate, which results in a relatively high amplitude of pressure fluctuations but results for the external mixing case show that fuel and oxidizer mixture flow carries more complicated, multiple wave characteristics due to broad mixing region as well as disintegration and merging phenomena of propellant films.

  • PDF

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향)

  • Cho, Siehyung;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

A Study on the Combustion Characteristics with Hydrogen Contents of SNG Fuel in Low-Swirl Combustor (저선회 연소기에서 합성천연가스(SNG) 연료의 수소함량에 따른 연소 특성 연구)

  • JEONG, HWANGHUI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • This paper describes experimental results on combustion characteristics with hydrogen contents of synthetic natural gas (SNG) in low swirl combustor. To investigate the effect of hydrogen contents for premixed SNG flame, stability map, CH chemiluminescence images, flame spectrum analysis and emission performances were measured. In the results, as the hydrogen content was increased, the lean flammable limit was expanded and the flame length was decreased. The hydrogen contents affected the flame liftoff height, and it has different tendency according to the equivalence ratio and flame shape. The change of height and length of flame according to hydrogen contents is caused by the fast burning velocity of hydrogen, which can be confirmed by GRI 3.0 reaction mechanism in PREMIX code. The intensity of $OH^*$, $CH^*$ and $C_2^*$ was confirmed by spectrum analysis of flame. As a result, the $CH^*$ intensity was not significantly different according to hydrogen content. The increase of hydrogen contents influenced positively CO and NOx emission performances.

Velocity and Spray Characteristics under Swirl Flows in a Model Combustor (모델연소기 선회유동장에서의 속도 및 분무특성)

  • Bae, C.S.;Lee, D.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF

Surface pressure measurements in translating tornado-like vortices

  • Kassab, Aya;Jubayer, Chowdhury;Ashrafi, Arash;Hangan, Horia
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.447-462
    • /
    • 2021
  • High spatial and temporal surface pressure measurements were carried out in the state-of-the-art tornado simulator, the Wind Engineering, Energy and Environment (WindEEE) Dome, to explore the characteristics of stationary and translating tornado-like vortices (TLV) for a wide range of swirl ratios (S=0.21 to 1.03). The translational speed of the TLV and the surface roughness were varied to examine their effects on tornado ground pressures, wandering, and vortex structure. It was found that wandering is more pronounced at low swirl ratios and has a substantial effect on the peak pressure magnitude for stationary TLV (error percentage ≤ 35%). A new method for removing wandering was proposed which is applicable for a wide range of swirl ratios. For translating TLV, the near-surface part lagged behind the top of the vortex, resulting in a tilt of the tornado vertical axis at higher translating speeds. Also, a veering motion of the tornado base towards the left of the direction of the translation was observed. Wandering was less pronounced for higher translation speeds. Increasing the surface roughness caused an analogous effect as lowering the swirl ratio.

A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection (커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구)

  • Sin, Yunsub;Lee, Geesoo;Kim, Hyunchul;Kwak, Sangshin;Shin, Suk Shin;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.

Comparison of Combustion Performance between Single Injector Combustor and Sub-scale Combustor (액체로켓엔진 연소기용 단일 분사기 연소기와 축소형 연수고 수류/연소시험 결과 비교)

  • Kim, Seung-Han;Han, Yeoung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.451-454
    • /
    • 2006
  • This paper describes the results of cold flow test and hot firing tests of an uni-element coaxial swirl injector and hot firing tests of a subscale combustor, as to the development effort of coaxial swirl injector for high performance liquid rocket engine combustor. A major design parameter for coaxial swirl injector is the recess number of a bi-swirl injector. The results of hot firing tests of the uni-element injector combustor and the sub-scale combustor are analyzed to investigate the effect of the recess number influencing on the combustion performance and pressure fluctuation. The test results of a cold flow test of the unielement combustor shows that it was shown that the change in recess number has significant effect on mixing characteristics and efficiency, while the effect of recess number on atomization characteristic is not The results of a series of firing tests using unielement and subscale combustor show that the recess length significantly affects the hydraulic characteristics, the combustion efficiency, and the dynamics of the liquid oxygen/kerosene bi-swirl injector. As a point of combustion performance, combustion efficiencies are 90% for unielement combustor and 95% for subscale combustor. The difference in the characteristic velocities between the unielement combustor and the subscale combustor may be caused by the difference in thermal loss to the combustor wall and the relative lengths of the combustion chamber. For a mixed type coaxial swirl combustor, the pressure drop across the injector increases as recess number becomes larger. The low frequency pressure fluctuation observed in unielement combustor can be related to the propellant mixing characteristics of the coaxial bi-swirl injector. The effect of the recess number on the pressure fluctuation inside the combustion chamber is more significant in un i-element combustor than the subscale combustor, of which the phenomena are also observed in time domain and frequency domain.

  • PDF