• 제목/요약/키워드: Low strain

검색결과 2,099건 처리시간 0.033초

극저탄소강판의 자성에 미치는 변형소둔 결정립도의 영향 (Effects of Strain Annealing Grain Size on the Magnetic Properties of Extra-Low Carbon Steel)

  • 안성권;정원섭;박정웅
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.208-218
    • /
    • 2006
  • The effects of the grain size on the magnetic properties in extra-low carbon steel after strain annealing were investigated. Two kinds of sample were prepared. One is the annealed sheet, which was annealed at $670^{\circ}C$ and $850^{\circ}C$ for various time periods after cold rolling. The other is the strain annealed sheet, which was temper rolled by 0.4% and subsequently strain annealed at the temperature ranging between $670^{\circ}C$ and $850^{\circ}C$ for various time periods. The grains after strain annealing became more coarse than those after primary annealing. The grains were coarsened due to the strain induced grain boundary migration (SIGM). It was found that the permeability tended to be increased and coercivity tended to be decreased with the increase of grain size. The optimum magnetic properties was achieved after strain annealing at $850^{\circ}C$ for 30 minites. Under this condition, the coercivity was measured to be 0.6 and the permeability was measured up to be 13000.

Ag Electrode Strain Sensor Fabrication Using Laser Direct Writing Process

  • Kim, Hyeonseok;Shin, Jaeho;Hong, Sukjoon;Ko, Seung Hwan
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.215-218
    • /
    • 2015
  • As several innovative technologies for flexible electric devices are being realized, demand for in-situ strain monitoring for flexible electric devices is being emphasized. Because flexible devices are commonly influenced by substrate strain, suitable strain sensors for flexible devices are essential for the sophisticated maneuvering of flexible devices. In this study, a flexible strain sensor based on an Ag electrode is prepared on a polyimide substrate using the LDW (laser direct writing) process. In this process, first, the Ag nanoparticles are coated on the substrate and selectively sintered using a focused laser. Because of the advantages of the LDW process (such as being mask-less, using low temperatures, and having non-vacuum characteristics), the entire fabrication process has been dramatically simplified; as a final outcome, a highly reliable strain sensor has been fabricated. Using this strain sensor, various strain conditions that arise from different bending radii can be detected by measuring real-time electrical signals.

PLASTIC STRAIN RATIOS AND PLANAR ANIOSOTROPY OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • KIM K. J.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.259-268
    • /
    • 2005
  • In order to analyze the sheet drawability, the measurement of the plastic strain ratio was carried out for the 5182 aluminum alloy sheets in which were cold rolled without lubrication and subsequent recrystallization annealing. The average plastic strain ratio of the 5182 aluminum sheets was 1.50. It was considered that the higher plastic strain ratio was resulted from the ND//<111> component evolved during rolling and maintained during annealing. The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets of the 5182 aluminum alloy skin sheet and the polypropylene core sheet with high formability have been developed for application for automotive body panels in future light weight vehicles with significant weight reduction. The AA/PP/AA sandwich sheets were fabricated by the adhesion of the core sheet and the upper and lower skin sheets. The AA/PP/AA sandwich sheet had high plastic strain ratio (1.58), however, the planar anisotropy of the sandwich sheet was little changed after fabrication. The optimum combination of directionality of the upper and lower skin sheets having high plastic strain ratio and low planar anisotropy was calculated theoretically and an advanced process for producing the sandwich sheets with high plastic strain ratio was proposed. The developed sandwich sheets have a high average plastic strain ratio of 1.55 and a low planar anisotropy of 0.17, which was improved more by 3.2 times than that of 5182 aluminum single sheet.

STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang;Hashimoto, Naoyuki
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.619-638
    • /
    • 2006
  • Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

지진하중 조건의 비선형 유한요소해석에서 반복경화 거동 고려를 위한 Bi-linear 응력-변형률 곡선 (Bi-linear Stress-Strain Curves for Considering Cyclic Hardening Behavior of Materials in the Nonlinear FE Analysis under Seismic Loading Conditions)

  • 정현준;김진원;김종성;구경회
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.59-68
    • /
    • 2018
  • This study compares true stress-true strain curves obtained by tensile tests of various piping materials with bi-linear stress-strain approximation suggested in the JSME Code Case(CC) Draft, a guideline for piping seismic inelastic response analysis. Based on the comparisons, the reliability of the bi-linear approximation is evaluated. It is found that bi-linear stress-strain curve of TP316 stainless steel is in good agreement with its true stress-true strain curve. However, Bi-linear stress-strain curves of TP304 stainless steel and carbon steels determined by the approximation cannot appropriately estimate their stress-strain behavior. Accordingly new bi-linear approximations for carbon steels and low-alloy steels are proposed. The proposed bi-linear approximations for carbon and low-alloy steels, which include the temperature effect on strength and hardening of material, estimate their stress-strain behavior reasonably well.

PWR환경을 모사한 저주기 피로실험장치 국산화 (Development of Low-Cycle Fatigue Test Rig in Simulated PWR Environments)

  • 정일석;김상재;이용성;홍승열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.178-183
    • /
    • 2004
  • For developing fatigue design curve of cast stainless steels that would be used in piping material of domestic nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with another previous results.

  • PDF

Study of shear and elongational flow of solidifying polypropylene melt for low deformation rates

  • Tanner, R.I.;Kitoko, V.;Keentok, M.
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.63-73
    • /
    • 2003
  • An experimental technique was developed to determine the strain-rate in a tensile specimen. Then one can calculate the transient isothermal elongational viscosity. Both shear and elongational viscosities were measured to study the effect of shear and elongational fields on the flow properties. The comparison between these viscosities shows that the onset of rapid viscosity growth as crystallization solidification proceeds occurs at about the same value of time at very small deformation rates (0.0028 and 0.0047 $s^{-1}$). The comparison of these measured viscosities as functions of shear and elongational Hencky strains also reveals that the onset of rapid viscosity growths starts at critical Hencky strain values. The behaviour of steady shear viscosity as function of temperature sweep was also explored at three different low shear rates. Finally, the influence of changing oscillatory frequencies and strain rates was also investigated.

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.

채널 간격에 따른 대향류 확산화염의 가연 영역의 변화 (Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap)

  • 이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF

저온용 고장력강(EH36)의 평균 응력 삼축비에 따른 파단 변형률 정식화 (Formulation of Failure Strain according to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36))

  • 정준모;남웅식
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.19-26
    • /
    • 2013
  • Stress triaxiality is recognized as one of the most important factors for predicting the failure strain of ductile metals. This study dealt with the effect of the average stress triaxiality on the failure strain of a typical low-temperature high-strength marine structural steel, EH36. Tensile tests were carried out on flat specimens with different notches, from relatively smooth to very sharp levels. Numerical simulations of each specimen were performed by using ABAQUS. The failure initiation points in numerical simulations were identified from a comparison of the engineering stress vs. strain curves obtained from experiments with simulated ones. The failure strain curves for various dimensionless critical energy levels were established in the average stress triaxiality domain and compared with the identified failure strain points. It was observed that most of the failure initiation points were approximated with a 100% dimensionless critical energy curve. It was concluded that the failure strains were well expressed as a function of the average stress triaxiality.