• Title/Summary/Keyword: Low phase noise

Search Result 612, Processing Time 0.029 seconds

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

Long-range multiple-input-multiple-output underwater communication in deep water (심해에서의 장거리 다중입출력 수중통신)

  • Kim, Donghyeon;Kim, Daehwan;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.417-427
    • /
    • 2021
  • Long-range communication in deep waters must overcome the low data rate due to limited bandwidth. This paper presents the performance of Multiple-Input-Multiple-Output (MIMO) system to increase the data rate. In MIMO system, communication performance is degraded by crosstalk between users and an adaptive passive Time Reversal Processing (TRP) is widely used to eliminate this. In October 2018, long-range underwater acoustic communication experiment was conducted in deep water (1,000 m ~) off the east of Pohang, South Korea. During the experiment, a vertical line array was utilized and communication signals modulated by binary phase shift keying and quadrature phase shift keying with a symbol rate of 512 sps were transmitted. To generate MIMO communication signals, received signals from ranges of 26 km and 30 km is synthesized. Compared to the conventional passive TRP, the adaptive passive TRP eliminates the crosstalk between users and achieves error-free performance with an increase of output signal-to-noise ratio. Therefore, two users separated by 4 km in range achieves an aggregate data rate of 1,024 symbols/s.

Design and Fabrication of the Push-push Dielectric Resonator Oscillator using a LTCC (LTCC를 이용한 push-push 유전체 공진 발진기의 설계 및 제작)

  • Ryu, Keun-Kwan;Oh, Eel-Deok;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.541-546
    • /
    • 2010
  • The push-push DRO(dielectric resonator oscillator) using a multi-layer structure of LTCC(low temperature co-fired ceramic) fabrication is designed. After the single DRO of series feedback type in the center frequency of 8GHz is designed, the push-push DRO in the center frequency of 16GHz including the Wilkinson power combiner is designed. The bias circuit affecting the size of oscillator are embedded in the intermediate layer of the LTCC multi-layer substrate. As a result, the large reduction in the size of VCO is obtained compared to the general oscillator on the single layer substrate. Experimental results show that the fundamental and third harmonics suppression are above 15dBc and 25dBc, respectively, and phase noise characteristics of the push-push DRO presents performance of -102dBc/Hz@100KHz and -128dBc/Hz@1MHz offset frequencies from carrier.

$V_2O_5/V/V_2O_5$ based uncooled infrared detector by MEMS technology ($V_2O_5/V/V_2O_5$ 다층박막 및 MEMS기술을 이용한 비냉각형 적외선 감지 소자의 제작)

  • Han, Yong-Hee;Hur, Jae-Sung;Park, In-Hoon;Kim, Kun-Tae;Chi-Anh;Shin, Hyun-Joon;Sung Moon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.131-131
    • /
    • 2003
  • Surface micromachined uncooled IR detector with the optimized VOx bolometric layer was fabricated based on sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$. In order to improve the detectivity of the IR detector, we optimized a few factors in the viewpoint of bolometric material. Vanadium oxide thin film is a promising material for uncooled microbolometers due to its high temperature coefficient of resistance at room temperature. It is, however, very difficult to deposit vanadium oxide thin films having high temperature coefficient of resistance and low resistance because of process limits in microbolometer fabrication. In order to increase the responsivity and decrease noise, we increase TCR of bolometric material and decrease room temperature resistance based on the sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$ by conventional sputter. By oxygen diffusion through low temperature annealing of V$_2$O$_{5}$V/V$_2$O$_{5}$ in oxygen ambient, various mixed phase vanadium oxide was formed and we obtained TCR in range of-1.2 ~-2.6%/$^{\circ}C$ at room temperature resistance of 5~100k$\Omega$.mega$.

  • PDF

A new image rejection receiver architecture using simultaneously high-side and low-side injected LO signals (하이사이드와 로우사이드 LO 신호를 동시에 적용하는 새로운 이미지 제거 수신기 구조)

  • Moon, Hyunwon;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose a new image rejection receiver architecture using simultaneously the high-side and low-side injected LO signals. The proposed architecture has a lower noise figure (NF) performance and a higher linearity characteristic than the previous receiver architecture using a single LO signal. Also, the proposed receiver shows a higher IRR performance about 6dB than that of the previous Weaver image rejection architecture even though the same gain and phase errors between I-path and Q-path exist. To verify these characteristics, we derive an IRR formular of the proposed architecture as a function of mismatch parameters. And we demonstrate its formular's usefulness through the system simulation. Therefore, the proposed architecture will be widely used to implement the image rejection receiver due to its higher IRR performance.

A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine (가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

Improved Image Quality and Radiation Dose Reduction in Liver Dynamic CT Scan with the Protocol Change (Liver CT 검사에서 프로토콜 변화에 따른 선량 감소와 영상의 질 개선에 관한 연구)

  • Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The purpose is reducing radiation dose while maintaining of image quality in liver dynamic CT(LDCT) scan, by protocols generally used and the tube voltage set at a low level protocol compared to the radiation dose and image quality. The target is body mass index, 18.5~24 patients out of 40 patients who underwent the ACT(abdominal CT). Group A(tube voltage : 120kVp, SAFIRE strength 1) of 20 people among 40 people, to apply the general abdominal CT scan protocol, group B(tube voltage : 100kVp, apply SAFIRE strength 0~5) was 20 people, set a lower tube voltage. Image quality evaluation was setting a region of interest(ROI) in the liver parenchyma, aorta, superior mesenteric artery (SMA), celiac trunk, visceral fat of arterial phase. In the ROI were compared by measuring the noise, signal to noise ratio(SNR), contrast to noise ratio(CNR), CT number. In addition, qualitative assessments to evaluate two people in the rich professional experience in Radiology by 0-3 points. We compared the total radiation dose, dose length product(DLP) and effective dose, volume computed tomography dose index(CTDIvol). The higher SAFIRE in the tube voltage 100 kVp, noise is reduced, CT number was increased. Thus, SNR and CNR was increased higher the SAFIRE step. Compared with the tube voltage 120kVp, noise, SNR, CNR was most similar in SAFIRE strength 2 and 3. Qualitative assessment SAFIRE strength 2 is the most common SAFIRE strength 2 the most common qualitative assessment, if the tube voltage of 100kVp when the quality of the images better evaluated was SAFIRE strength 1. Dose was reduced from 21.69%, in 100kVp than 120kVp. In the case of a relatively high BMI is not LDCT scan, When it is shipped from the factory tube voltage is set higher, unnecessary radiation exposure when considering the reality that is concerned, when according to the results of this study, set a lower tube voltage and adjust the SAFIRE strength to 1 or 2, the radiation without compromising image quality amount also is thought to be able to be reduced.

Pyroelectric Properties of the $\beta$-PVDF (Poly(vilnylidene fluoride)) Thin Film Prepared by Vacuum Deposition with Applying Electric Field (전계인가 진공 증착법으로 제작된$\beta$ -PVDF (Poly(vinylidene fluoride)) 박막의 초전 특성)

  • Chang, Dong-Hoon;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.23-30
    • /
    • 2002
  • The PVDF (Polyvinylidene Fluoride) thin film having P phase is prepared by the vacuum deposition with applying the electric field and its pyroelectric properties are studied by using a dynamic method to examine the possibility of the application to the pyroelectric IR sensor. The pyroelectric responses of the PVDF thin film are characterized as the frequency dispersion in both low and high modulation frequency regions, and their frequency dependences are observed. In the low frequency region (2~10Hzz), the polarization can easily rotate with the increase of modulation frequency and show the maximum since the reorientation rate of domains is higher than the modulation frequency. On the other hand, in the high frequency region (100~1000Hz), the pyroelectric response decreases as the frequency increases, because the reorienatation rate of domains is suppressed and thus, the change of polarization decreases. Pyroelectric coefficient, figure of merits for noise equivalent power and detectivity of the PVDF thin film are measured as 3.2$\times$10$^{-10}$ C/$\textrm{cm}^2$.K, 2.34$\times$10$^{-10}$ C.cm/J and 1.32$\times$10$^{-9}$ C.cm/J, respectively. Also, the noise equivalent and the detectivity are 1.66$\times$10$^{-7}$ W/H $z^{$\sfrac{1}{2}$}$, 6.03$\times$10$^{5}$ cm.H $z^{$\sfrac{1}{2}$}$W, respectively.

Implementation of Power Cable Diagnostic Simulator using VLF (VLF를 활용한 전력케이블 진단 시뮬레이터 구현)

  • Kim, Kuk;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.593-602
    • /
    • 2020
  • Power cables installed in domestic factories or underground can cause accidents depending on the manufacturing process, installation, and environmental conditions during use. When an accident occurs in a power cable, it can cause enormous economic loss and social confusion. Hence, the importance of preventive management of the cable through diagnosis is increasing to prevent it. Therefore, in this paper, a diagnostic sample cable was produced by simulating a part that could be a problem due to the installation, manufacturing defects, or deterioration of cables that can occur in the field. Dielectric loss Tangent (tan 𝛿; TD), and Partial Discharge(PD) tests were performed. Partial discharge and AC (60Hz) withstand voltage equipment using High-Frequency Current Transformer (HFCT) were applied After applying a VLF (Very Low Frequency) power supply with a frequency of 0.1Hz was applied. As a result, B and C phase defect samples at a 2.0U0 voltage through the VLF could measure the internal partial discharge in the A-phase normal sample cable from the noise at a 0.5U0 to 2.0U0 voltage. In addition, the 1.5U0 voltage was measured through the AC (60Hz) withstand voltage equipment of the commercial frequency to verify its effectiveness. Partial discharge in the run-off state was measured at a voltage of 1.0U0, and there was a risk when installing the equipment. AC power equipment showed a difficulty of movement by volume or weight. The diagnostic method, through the VLF of the quadrant state, revealed its safety and effectiveness.

Design of a Ultra Miniaturized Voltage Tuned Oscillator Using LTCC Artificial Dielectric Reson (LTCC 의사 유전체 공진기를 이용한 초소형 전압제어발진기 설계)

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.613-623
    • /
    • 2012
  • In this paper, we present an ultra miniaturized voltage tuned oscillator, with HMIC-type amplifier and phase shifter, using LTCC artificial dielectric resonator. ADR which consists of periodic conductor patterns and stacked layers has a smaller size than a dielectric resonator. The design specification of ADR is obtained from the design goal of oscillator. The structure of the ADR with a stacked circular disk type is chosen. The resonance characteristic, physical dimension and stack number are analyzed. For miniaturization of ADRO, the ADR is internally implemented at the upper part of the LTCC substrate and the other circuits, which are amplifier and phase shifter are integrated at the bottom side respectively. The fabricated ADRO has ultra small size of $13{\times}13{\times}3mm^3$ and is a SMT type. The designed ADRO satisfies the open-loop oscillation condition at the design frequency. As a results, the oscillation frequency range is 2.025~2.108 GHz at a tuning voltage of 0~5 V. The phase noise is $-109{\pm}4$ dBc/Hz at 100 kHz offset frequency and the power is $6.8{\pm}0.2$ dBm. The power frequency tuning normalized figure of merit is -30.88 dB.