• Title/Summary/Keyword: Low pH stress

Search Result 169, Processing Time 0.045 seconds

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

Acid Stress Response of Lactobacillus rhamnosus GG in Commercial Yogurt (발효유제품에서 Lactobacillus rhamnosus GG의 생육 특성)

  • Bang, Miseon;Jeong, Anna;Park, Dong-June;Lim, Kwang-Sei;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • Yogurt is a product of the acidic fermentation of milk, which affects the survival of lactic acid bacteria (LAB). The aim of this present study was to examine the survival and acid stress response of Lactobacillus rhamnosus GG to low pH environment. The survival of LAB in commercial yogurt was measured during long-term storage. The enumeration of viable cells of LAB was determined at 15-day intervals over 52-weeks at $5^{\circ}C$. L. acidophilus, L. casei, and Bifidobacterium spp. showed low viability. However, L. rhamnosus GG exhibited excellent survival throughout the refrigerated storage period. At the end of 52-weeks, L. rhamnosus GG survived 7.0 log10 CFU/mL. $F_0F_1$ ATPase activity in L. rhamnosus GG at pH 4.5 was also evaluated. The ATPase activities of the membranes were higher when exposed at pH 4.5 for 24 h. The survival of L. rhamnosus GG was attributable to the induction in $F_0F_1$ ATPase activity. In addition, the mRNA expression levels of acid stress-inducible genes at low pH were investigated by qRT-PCR. clpC and clpE genes were up-regulated after 1 h, and atpA and dnaK genes were up-regulated after 24 h of incubation at pH 4.5. These genes could enhance the survival of L. rhamnosus GG in the acidic condition. Thus, the modulation of the enzymes or genes to assist the viability of LAB in the low pH environment is thought to be important.

  • PDF

Effects of Acid Treatments on Chlorophyll, Carotenoid and Anthocyanin Contents in Arabidopsis (산성처리가 애기장대의 엽록소, 카로티노이드, 안토시아닌 등의 색소 함량에 미치는 영향)

  • Im, Kyung-Hoan
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.81-85
    • /
    • 2010
  • Arabidopsis seedlings subjected to low pH stress in the range of pH 5.6-4.0 did not show significant retardations in root and shoot growths. Treatment of pH 3.5-2.5 resulted in significant reductions in root and shoot length, especially in roots. Chlorophyll contents in seedlings increased during acid treatment of pH 5.6-4.0, but decreased by stronger acid treatment of pH 4.0 and lower pHs. Total carotenoid contents showed similar trend to chlorophyll contents by increasing during pH 5.6-3.5 treatments and decreasing by pH 3.0-2.5. Anthocyanin contents increased under acid stress of pH 5.6-3.0 and showed great reduction at pH 2.5. The ratios of carotenoids/chlorophylls and anthocyanins/chlorophylls increased by acid stress treatments. That indicates plants try to adjust physiologically to acid stress and protect chlorophylls by increasing carotenoid and anthocyanin contents. However, different responses of chlorophylls and anthocyanins to acid stress indicate both pigments play different roles in protecting plant from acid stress.

Histidine (His83) is Essential for Heat Shock Factor 1 (HSF1) Activation in Protecting against Acid pH Stress

  • Lu, Ming;Chang, Ziwei;Park, Jang-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3405-3409
    • /
    • 2013
  • The activation of heat shock factor 1 (HSF1) can be induced by the changes in environmental pH, but the mechanism of HSF1 activation by acidification is not completely understood. This paper reports that a low pH (pH~6.0) can trigger human HSF1 activation. Considering the involvement of the imidazole group of histidine residues under acid pH stress, an in vitro EMSA experiment, Trp-fluorescence spectroscopy, and protein structural analysis showed that the residue, His83, is the essential for pH-dependent human HSF1-activation. To determine the roles of His83 in the HSF1-mediated stress response affecting the cellular acid resistance, mouse embryo fibroblasts with normal wild-type or mutant mouse HSF1 expression were preconditioned by heating or pH stress. The results suggest that His83 is essential for HSF1 activation or the HSF1-mediated transcription of heat shock proteins, in protecting cells from acid pH stress.

Effects of Acute Acid Stress on Hatching and Mortality of Hermaphroditic Teleost, Rivulus marmoratus(Cyprinodontiformes; Rivulidae)

  • Kim, Ae-Ri;Lee, Meoung-Sook;Park, Eun-Ho
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.345-348
    • /
    • 2003
  • The effects of acute acid stress on hatching success and hatching period of laboratory-reared hermaphroditic fish Rivulus marmoratus were examined. The effects of acute acid toxicity on mortality was also determined in three life stages of this fish. There was a significant negative effect of acid stress on hatching performance in the R. marmoratus embryos. The hatching success was only 5% at pH 3.5 compared to over 78% at pH higher than 4.0. The hatching period was also delayed by low pH treatments. The larval and juvenile stages were more sensitive to acid toxicity on mortality than the adult stage, but larvae and juveniles showed similar sensitivity. The 96-h LC50 value was pH 3.8 in larval and juvenile stages and pH 3.3 in adult stage.

Physiological Responses of Gray Mullet Mugil cephalus to Low-pH Water (사육수의 pH변화가 숭어(Mugil cephalus)에 미치는 생리적 영향)

  • Moon, Hye-Na;Park, Jin-Hee;Park, Cheonman;Namgung, Jin;Kim, Ki-Hyuk;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • We examined changes in the physiological responses of gray mullet Mugil cephalus exposed to acidic seawater (pH 6.0, 6.5, 7.0) and normal seawater (pH 8.0, control) for 15 days. As pH decreased, survival rate and body weight also decreased. Levels of aminotransferase, total protein and triglycerides also differed significantly with changes in pH, presumably due to stress caused by exposure to acidic water. The level of osmotic pressure was significantly higher in the pH 6.0 group than in other groups. Superoxide dismutase was significantly higher in the pH 6.5 and 7.0 groups than in the pH 8.0 group, and glutathione level was lowest in the pH 6.0 group. We conclude that decreasing the pH level of seawater induces a stress response in fish, damaging their ability to control their hematological and osmotic pressure. Antioxidant enzymes are generally sensitive to osmotic stress; in this study, antioxidant activity significantly changed with pH level. These results indicate that physiological stress induced by exposure to acidification reduces survival rates and inhibits growth in M. cephalus.

Characterization of Chitinase in Oak Tissues and Changes in Its Activity Related to Water Stress and Inoculation with Hypoxylon atropunctatum

  • Chun, Se-Chul;Fenn, Patrick;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.144-151
    • /
    • 1999
  • Chitinase activities from Shumard oak tissues were determined to study changes in chitinase activities related to water stress. The enzyme extracted in sodium acetate buffer (0.1M, pH 4.5) was assayed by a colorimetric method. In addition, the fungal hyphae of Hypoxylon atropunctatum in xylem tissues of oak were observed through scanning electron microscopy. The enzyme in oak tissues was mainly endochitinase, and optimum pH for enzyme activity was 5. Specific chitinase activities from both of stems held under high relative humidity (ranges of 0.63-1.11 pKatal/$\mu\textrm{g}$ of protein) and stems held under low relative humidity (ranges of 0.41-0.99 pKatal/$\mu\textrm{g}$ of protein) were significantly increased following fungal inoculation with H. atropunctatum. However, there was no significant difference in chitinase activities between tissues held under high and low humidities, which might be due to fungal chitinase. Scanning electron microscopy showed holes in fungal hyphae in the xylem tissues of stems held under high humidity but not in the stems held under ow humidity, suggesting that hyphae might be hydrolyzed by plant hydolases such as chitinase.

  • PDF

Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil

  • Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and $H_2O_2$ contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS ($H_2O_2$) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.

Identification of the genes which related cold (low temperature) stress in Bombyx mori

  • Kang, Min-Uk;Choi, Kwang-Ho;Park, Kwan-Ho;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.102-107
    • /
    • 2016
  • Stress may be defined as any modification of environmental parameters that leads to a response by biological organisms. Stresses that affect biolpgical structures may be nonthermal, such as ultraviolet radiation, pH, or salinity, or thermal. Temperture is one of the major stresses that all living organism face. The major effects of cold(low emperature) are decrease of membrane fluidity and the stabilization of secondary structures of RNA and DNA in the cells, which may effect the efficiency of translation, transcription, and DNA replication. In this study, we focus on discovering the genes that are expressed by the cold(low temperature) stress in the silkworm. In cold(low temperature) stress test, we found 100% survive from cold stress at $0^{\circ}C$ up to 12h and $-5^{\circ}C$ up to 2h, and then, survive rate was rapidly decrease in silkworm. Thereafter two whole genes have selected by SSH(Suppression subtractive hybridization). (GenBank accession : GQ149511, GQ338156)

The Physiological Responses of Spotted Seahorse Hippocampus kuda to Low-pH Water (사육수의 pH변화가 복해마(Hippocampus kuda)에 미치는 생리적 영향)

  • Park, Cheonman;Kim, Ki-hyuk;Moon, Hye-Na;Yeo, In-Kyu
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.826-833
    • /
    • 2017
  • The rising concentration of atmospheric carbon dioxide is causing ocean acidification and global warming. The seahorse is an important species in marine ecosystems and fishery markets, however, their populations have recently decreased due to ocean acidification. As a result, we examined changes in the physiological responses of the spotted seahorse Hippocampus kuda when it was exposed to acidic sea water (pH 6.0, 6.5, and 7.0) and normal seawater (pH 8.0 as the control) over a period of 15 days. As the pH decreased, the seahorses' body weight and length also decreased. Components in body of ash, the crude lipids and crude proteins also differed significantly with changes in pH, due to stress caused by the seahorses' exposure to the acidic water conditions. The superoxide dismutase levels were significantly lower in the pH 6.0 and 6.5 groups than they were in the pH 7.0 and pH 8.0 groups. However, the catalase and glutathione levels were significantly higher in the acidic sea water groups. We suggest that decreasing the pH level of rearing water induces a stress response in H. kuda, damaging their ability to maintain their homeostasis and energy metabolism. Antioxidant enzymes are generally sensitive to acidic stress; in this study, the antioxidant activity was significantly affected by the pH level of the rearing water. These results indicate that physiological stress, induced by exposure to acidification, induces an antioxidant reaction, which can reduce general components in the body and the growth of H. kuda.