• 제목/요약/키워드: Low melting alloy

검색결과 149건 처리시간 0.03초

후판 Al 6061합금의 전자빔용접 특성 평가 (The Characteristic Evaluation of Electron Beam Welding for Al 6061 alloy with thick-thickness plate)

  • 정인철;심덕남;김용재
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.68-70
    • /
    • 2006
  • For the aluminum material of the thick-thickness more than 100mm Penetration depth Electron beam welding is effectively applicable with a characteristic of high energy intensity. But Al 6061 alloy has high crack sensitivity due to minor alloys, which are silicon, magnesium, copper etc. With a sample block of 135mm thickness EBW test was performed in vertical position. As tensile strength has $210{\sim}220N/mm^2$ with weld area broken. Bend test shows low ductility with fracture of partly specimens. Chemical contents of alloys show no difference between weld and base metal. Defect in middle weld area figures out typical hot crack due to low melting materials. Micro structure of weld area has some difference compare to HAZ and base metal. As a result of EBW test for Al 6061 alloy, it shows that weld defect could be occurred even though establishing of optimum weld parameter condition.

  • PDF

AZ31 마그네슘합금과 아연도금강판 이종소재의 레이저 브레이징 특성 (Characteristics of the laser brazing on AZ31 magnesium alloy and Zn coated steel dissimilar joint)

  • 이목영;김숙환
    • 한국레이저가공학회지
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2014
  • The dissimilar welding between magnesium alloy and steel sheet was required in automobile industry to increase the strength of the dissimilar joints. Laser brazing is one of the good joining processes for Mg- steel dissimilar joint. In this study, AZ31 magnesium alloy and Zn coated steel dissimilar joint was brazed using diode direct laser with Mg600 filler wire and Superior #21 flux. The wetting of Mg filler wire on Zn coating was very good because of the formation of eutectic phase with low melting temperature. The strength of the brazed joint between AZ31 magnesium alloy and Zn coated steel was 131.3N/mm. The fracture occurred at brazement.

  • PDF

주요 국산재 10가지 수종에 대한 Bi-Sn 저온용융 합금주입 목재복합체의 도장 효과 (Coating Effect of Low Temperature Melting Bi-Sn Metalized Wood Composites on 10 Different Korean Wood Species)

  • 박계신;서인수;이화형;강석구
    • 한국가구학회지
    • /
    • 제25권3호
    • /
    • pp.223-232
    • /
    • 2014
  • To make metalized wood composites of 10 different korean wood species, it was tested by Low temperature melting Bi-Sn alloy injection method at high temperature and high pressure condition. Metalized wood composite of each wood species had light ash color, but still maintained its own natural wood grain and wood figures. It was evaluated on coating properties. Furthermore, it also was check on effect of coating as like a changes of main color, wood grain and wood figures. The results of test were following as; a coating properties as like a cold resistance, heat resistance, acid resistance, alkali resistance, durability of abrasion, and cross-cut test was proper on the conditions of the KS standard. And, In aspect of color changes, the metalized wood composites of 10 different korean wood species had a light ash color, but still maintained its own natural wood grain and wood figures. Also, the more weight per gain of alloy is, the more grey background of metalized wood composite is.

  • PDF

탄소 나노튜브 함유 Solderable 이방성 도전성 접착제의 신뢰성 특성에 관한 연구 (Reliability Properties of Carbon Nanotube-filled Solderable Anisotropic Conductive Adhesives)

  • 임병승;이정일;김종민
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.15-20
    • /
    • 2017
  • In this paper, two types of assemblies using CNT-filled SACAs (with 0.03 wt% CNTs and without CNT) were prepared to investigate the influence of carbon nanotubes (CNTs) on the reliability properties of solderable anisotropic conductive adhesives (SACAs) with a low-melting-point alloy (LMPA). Two types of reliability test including thermal shock (TS: -55 to $125^{\circ}C$, 1000 cycles) and high-temperature and high-humidity (HTHH: $85^{\circ}C$, 85% RH, 1000 h) tests were conducted. The SACA assemblies with and without CNTs showed stable electrical reliability properties due to the formation of wide and stable metallurgical interconnection between corresponding metallizations by the molten LMPA fillers. Although the mechanical pull strength of CNT-filled SACA assemblies was decreased after thermal aging (because of the excessive layer growth and planarization of the IMCs), the CNT-filled SACA with 0.03wt% CNTs showed enhanced mechanical reliability properties compared with the SACA assemblies no CNTs. This enhancement in mechanical performance was due to the reinforcement effect of the CNTs. These results demonstrate that CNTs within the CNT-filled SACAs can improve the reliability properties of CNT-filled SACAs joints due to their superior physical properties.

티타늄 합금 스크랩의 재활용 및 응용 기술 현황 (Recycling and Applications of Titanium Alloy Scraps)

  • 오정민;권한중;임재원
    • 청정기술
    • /
    • 제19권2호
    • /
    • pp.75-83
    • /
    • 2013
  • 본 총설에서는 이원계 티타늄 합금 스크랩을 재활용하기 위해 수소 플라즈마 아크 용해를 이용하여 잉곳을 제조하고, 수소화-탈수소화법과 고상탈산 공정을 통해 저산소 합금 분말을 제조하는 기술에 대하여 소개하고자 한다. 이에 더해, 이원계 티타늄 합금 스크랩을 이용하여 고용상 서메트용 탄화물 분말을 제조하는 응용 분야에 대해서도 소개하고자 한다. 이원계 티타늄 합금 스크랩은 수소 플라즈마 아크 용해를 통해 건전한 잉곳의 제조가 가능함을 확인하였고, 최종적으로 제조된 티타늄 합금 분말의 산소함량은 1,000 ppm 이하였으며, 이를 고용상 서메트용 탄화물 분말의 제조에 응용이 가능함을 확인하였다.

이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향 (Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings)

  • 정재영
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

훼로 망간 합금철 용탕의 감압 증류에 관한 연구 (Study of the Distillation of Ferromanganese Alloy Melts at Reduced Pressure)

  • 홍성훈;전병혁;유병돈;김종덕;장필용;강수창;금창훈
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.154-162
    • /
    • 2010
  • A fundamental study of the distillation behavior of ferromanganese alloy melts was carried out at 1773 K and 0.1333 kPa (=1 Torr). During the distillation of ferromanganese alloy melts under reduced pressure, manganese vaporizes preferentially to phosphorus and other solute elements. High purity manganese metal with a very low content of solute elements can be obtained by distillation of ferromanganese alloy melts. The evaporation of manganese is suppressed as the carbon content of ferromanganese alloy melt increases due to the decrease of activity and vapor pressure of the manganese. When the carbon content of ferromanganese alloy melt is high, melt droplets are ejected from the bath, especially in the early stages of the distillation, and the solute elements in the splashed droplets contaminate the condensed material. The ejection of melt droplets is presumed to be caused by the increase of melting temperature and viscosity of the surface layer of melt due to the enrichment of solute elements such as carbon and iron.

Effect of Oxygen on Mechanical Properties of Metal Injection Molded Titanium and Titanium Alloy

  • Doi, Kenji;Hanami, Kazuki;Tanaka, Hideki;Teraoka, Tsuneo;Terauchi, Shuntaro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.771-772
    • /
    • 2006
  • Mechanical properties of metal injection molded titanium and titanium alloy parts were investigated in this study. Material powders with low oxygen content and spherical shape were obtained by electrode induction-melting gas atomization which could melt and atomize titanium and titanium alloy bars with no touch on crucible or tundish. Tensile specimens were fabricated from obtained powders by metal injection molding process. Tensile strength of the specimens increases with increasing oxygen content. This result corresponds to a tendency of wrought metal.

  • PDF

태양광 리본용 Sn48In52Agx (wt%) 저융점 솔더의 특성에 미치는 Ag의 영향 (Effects of Ag on the Characteristics of Sn48In52Agx (wt%) Low-Melting Solders for Photovoltaic Ribbon)

  • 이승한;신동현;조태식;김일섭
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.74-78
    • /
    • 2024
  • We have studied the effects of Ag on the characteristics of Sn48In52Agx (wt%) low-melting solders for photovoltaic ribbons. The Sn48In52 (wt%) solder coexisted in the InSn4 and In3Sn alloys. Ag atoms added in the solder formed an AgIn2 alloy by reacting with some part of In atoms, while they did not react with Sn atoms. The addition of Ag atoms in the Sn48In52Agx (wt%) solders showed useful results; an increase in peel strength and a decrease in melting temperature. The peel strength of the ribbon plated with the Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn48In52Ag1 (wt%) solder largely increased to 125.1 N/mm2. In the meanwhile, the melting temperature of the Sn48In52 (wt%) solder was 119.2℃, and that of the Sn48In52Ag1 (wt%) solder decreased to 114.0℃.

로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향 (Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material)

  • 정광기;이상우;권성욱;최성우;이희옥
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.