• Title/Summary/Keyword: Low liquid depth

Search Result 49, Processing Time 0.031 seconds

Experimental study on characteristic of sloshing impact load in elastic tank with low and partial filling under rolling coupled pitching

  • Wu, Wenfeng;Zhen, Changwen;Lu, Jinshu;Tu, Jiaoyang;Zhang, Jianwei;Yang, Yubin;Zhu, Kebi;Duan, Junxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.178-183
    • /
    • 2020
  • A series of experiments covering lowest three natural frequencies of rolling coupled pitching were conducted to investigate liquid sloshing with low liquid depth. The test results show that the most violent liquid sloshing in rolling and pitching is located in the vicinity of the first order natural frequency (f1). When the excitation frequency of rolling and pitching is located between 0.98f1 and 1.113f1, roof-bursting phenomenon of liquid appeared, and the maximum impact pressure is at 1.09f1. When the external excitation frequency is at 1.113f1, the number of sloshing shocks decreases sharply. Furthermore, the space distribution of the impact pressure on the left bulkhead and the top bulkhead was analyzed. It is concluded that with low liquid filling, the impact load is greater near the free surface and the top of tank, and the impact position of the side bulkhead increases with the increasing of the frequency near the resonant frequency.

Regulation of depth and composition of airway surface liquid

  • J. H. Widdicombe;S. J. Bastacky;D. X.Y. Wu;Lee, C. Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.119-130
    • /
    • 1996
  • We review the factors which regulate the depth and composition of the human airway surface liquid (ASL). These include secretion from airway submucosal glands, ion and fluid transport across the surface epithelium, goblet cell discharge, surface tension and transepithelial gradients in osmotic and hydrostatic pressure. We describe recent experiments in which we have used low temperature scanning electron microscopy of rapidly frozen specimens to detect changes in depth of ASL in response to submucosal gland stimulation. We also present preliminary data in which X-ray microanalysis of frozen specimens has been used to determine the elemental composition of ASL.

  • PDF

RGB-Depth Camera for Dynamic Measurement of Liquid Sloshing (RGB-Depth 카메라를 활용한 유체 표면의 거동 계측분석)

  • Kim, Junhee;Yoo, Sae-Woung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, a low-cost dynamic measurement system using the RGB-depth camera, Microsoft $Kinect^{(R)}$ v2, is proposed for measuring time-varying free surface motion of liquid dampers used in building vibration mitigation. Various experimental studies are conducted consecutively: performance evaluation and validation of the $Kinect^{(R)}$ v2, real-time monitoring using the $Kinect^{(R)}$ v2 SDK(software development kits), point cloud acquisition of liquid free surface in the 3D space, comparison with the existing video sensing technology. Utilizing the proposed $Kinect^{(R)}$ v2-based measurement system in this study, dynamic behavior of liquid in a laboratory-scaled small tank under a wide frequency range of input excitation is experimentally analyzed.

Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy (음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성)

  • Cho, H.K.;Kang, W.S.;Seok, J.K.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Determination of Normal Saturated- and Polycyclic Aromatic Hydrocarbons in the River Water of Bangladesh by Liquid-Liquid Extraction and Gas Chromatography

  • Mottaleb, M.A.;Sarma, D.K.;Sultana, S.;Husain, M.M.;Alam, S.M.M.;Salehuddin, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.99-105
    • /
    • 2003
  • A liquid-liquid extraction followed by evaporative concentration method was used to determine the concentration of normal, or straight chain, saturated hydrocarbons (NSH) $(C_{10}\;to\;C_{24})$ and polycyclic aromatic hydrocarbons (PAH) here defined as: fluorene, anthracene, pyrene, chrysene and perylene, in the Buriganga River water of Bangladesh. Samples were collected from 5 and 25 cm depth of water at the southern, middle and northern parts of the river at Postogolla, Sadarghat and Sowarighat stations. Hydrocarbons were extracted from 450 mL of water into 75 mL n-hexane and then concentrated into 1 or 2 mL solution by evaporation. These solutions were analyzed by gas chromatography. The highest and lowest concentrations were determined as $257\;{\mu}gL^{-1}\;for\;C_{13}\;and \;0.24\;{\mu}g\;L^{-1}\;for\;C_{22}$ at 5 ㎝ depth of water, at the northern part of the Sowarighat and southern part of the Postogolla, respectively. This method could allow the analysis of water for $C_{22}$ as low as $0.24\;{\mu}g\;L^{-1}$.

A study on the arc discharge characteristics of liquid insulating materials for electrical discharge machine (방전가공기용 액체 절연재료의 아크 방전 특성 연구)

  • 김상현;김해종;마대영;신태민
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.564-571
    • /
    • 1995
  • This paper deals with the arc discharge characteristics of kerosene oil as a basic study on electrical discharge machine. Using needle electrode the discharge voltage, discharge current, discharge energy and the shape of discharge crater are measured. In consequence, it becomes clear that the discharge crater(depth, height, diameter) is depending on the discharge energy. Rapid increase in depth, height and diameter of discharge crater was observed during initial discharge, where discharge energy is large. However, rather slow decrease of those values was found when discharge energy is low or N is more than 3. As the ratio of $I_p$$T_on$ increase, the shape of discharge crater gets near circle. The protuberances of the discharge crater were not formed by the melted needle electrode but by the that of work piece.

  • PDF

Effect of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality (돈분뇨 액비 시용이 벼 생육 및 침투수질에 미치는 영향)

  • Park, Baeg-Kyun;Lee, Jong-Sik;Cho, Nam-Jun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.153-157
    • /
    • 2001
  • To evaluate the effect of liquid pig manure application, the growth and yield of rice and the quality of infiltration water were investigated with application of different amounts of liquid manure. At this study, liquid pig manure was treated with 100, 200, 300 and 400% of recommending nitrogen fertilizer level, respectively. Liquid manure with application rate more than 200% of recommending N fertilizer level (11kg) caused to increase of plant height and number of tiller at panicle formation stage, but it caused the plant disease and pest and plant lodging. In those treatment, number of panicles per hill and number of spikelets per panicle were increased, but yield of rice was less than chemical fertilizer treatment due to low rate of ripeness and 1,000 grain weight. $NO_3-N$ concentration in infiltration water sample collected at 90 cm of soil depth was increased with increasing application amount of liquid manure. With liquid manure application more than 200% of recommending N fertilizer level, it affected negatively on yield and environment such as groundwater quality.

  • PDF

Motion Reduction of Rectangular Pontoon Using Sloshing Liquid Damper (슬로싱 액체 댐퍼를 이용한 사각형 폰툰의 운동 저감)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • The interaction between a sloshing liquid damper (SLD) tank and a rectangular pontoon was investigated under the assumption of the linear potential theory. The eigenfunction expansion method was used not only for the sloshing problem in the SLD tank but also for analyzing the motion responses of a rectangular pontoon in waves. If the frictional damping due to the viscosity of the SLD tank was ignored, the effect of the SLD appeared to be an added mass in the coupled equation of motion. The installation of the SLD tank had a greater effect on the roll motion response than the sway and heave motion of the pontoon. One resonance peak for rolling motion showed up in the case of a frozen liquid in the SLD tank. However, if liquid motion in the SLD tank was allowed, two peaks appeared around the first natural frequency of the fluid in the SLD tank. In particular, the peak value located in the low-frequency region had a relatively large value, and the peak frequency located in the high-frequency region moved into the high-frequency region as the depth of the liquid in the tank increased.

Circulating Tumor DNA in a Breast Cancer Patient's Plasma Represents Driver Alterations in the Tumor Tissue

  • Lee, Jieun;Cho, Sung-Min;Kim, Min Sung;Lee, Sug Hyung;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.48-50
    • /
    • 2017
  • Tumor tissues from biopsies or surgery are major sources for the next generation sequencing (NGS) study, but these procedures are invasive and have limitation to overcome intratumor heterogeneity. Recent studies have shown that driver alterations in tumor tissues can be detected by liquid biopsy which is a less invasive technique capable of both capturing the tumor heterogeneity and overcoming the difficulty in tissue sampling. However, it is still unclear whether the driver alterations in liquid biopsy can be detected by targeted NGS and how those related to the tissue biopsy. In this study, we performed whole-exome sequencing for a breast cancer tissue and identified PTEN p.H259fs*7 frameshift mutation. In the plasma DNA (liquid biopsy) analysis by targeted NGS, the same variant initially identified in the tumor tissue was also detected with low variant allele frequency. This mutation was subsequently validated by digital polymerase chain reaction in liquid biopsy. Our result confirm that driver alterations identified in the tumor tissue were detected in liquid biopsy by targeted NGS as well, and suggest that a higher depth of sequencing coverage is needed for detection of genomic alterations in a liquid biopsy.

Numerical Analysis of Liquid Rocket Engine Heat Insulator Considering Thermal Flow Environment (열유동 환경이 고려된 액체로켓엔진의 단열재 수치해석)

  • Chung, Yong-Hyun;Lee, Eun-Seok;Seol, Woo-Seok;Yang, Chang-Hwan;Kim, Woo-Kyum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.165-169
    • /
    • 2010
  • Liquid Rocket Engine is generally composed of extremely low and high temperature field. So that the component works properly including the electric component, the heat insulator should be applied appropriately. There are three steps. First, the heat source components should be defined and temperature field analyzed. Second, the heat transfer of pipes between the heat sources should be analyzed. Third, the components and pipes before and after applying the heat insulator should be analyzed. Finally, the optimized heat insulator depth can be calculated. In this paper, the procedure of this steps is established and investigated.

  • PDF