• Title/Summary/Keyword: Low frequency drift force

Search Result 9, Processing Time 0.026 seconds

Low Frequency Roll Motion of a Semi-Submersible Moored in Irregular Waves

  • Hong, Yong-Pyo;Choi, Yong-Ho;Lee, Dong-Yeon;Lee, Wang-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.1-13
    • /
    • 2007
  • A semi-submersible drilling rig is regarded as one of the typical offshore structures operated in the field with moderate environments such as the Gulf of Mexico, Brazil, and West Africa. Its typical roll and pitch natural periods are around 30 seconds, which avoids prevailing regions of the wave energy spectrum, and their responses in waves are quite acceptable for common operation conditions. But large roll and pitch motions can be induced by wave difference frequency energy spectrum if the metacentric heights of a semi-submersible decrease to small values in some loading conditions, and it is because the roll and pitch natural periods increase and approach to the region where the spectral density of the low frequency wave drift moment has significant value. This paper describes the low frequency roll motion of a semi-submersible that are excited by the wave 2nd order difference frequency energy by a series of model experiments. From the model tests with several different initial metacentric heights (GM), it was observed that a semi-submersible can experience large roll motion due to the wave group spectrum.

Mean viscous drift forces on a fixed vertical cylinder in waves and currents (파랑과 조류에 의한 고정된 수직 실린더 구조물에 작용하는 평균 점성 표류력)

  • Shin, Dong Min;Kim, Yuncheol;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.521-527
    • /
    • 2020
  • In offshore structures, the mean viscous drift force due to drag is considered to be a design part that has not been considered until recently. In particular, it is most important to calculate the drift force acting on a vertical cylinder considering both waves and currents in the low frequency region. This paper presents a process for deriving analytical solutions for the drift forces acting on a fixed vertical cylinder considering waves and currents. The area of the cylinder was considered by dividing it into a splash zone above the free surface and a submerged zone below the free surface. The presence of waves is considered only in the Splash Zone, and in the case of waves and currents, the equations were obtained for both the splash and submerged zones. The results show that drift forces occur due to the significant viscous effects in both the splash zone and the submerged zone. Therefore, the analytical solutions derived in this study can be used to calculate the drift force using the given design variables and form a theoretical basis for judging whether the magnitude of the drift force in each case has a dominant influence within a specific physical range.

An Improved Flux Estimator for Gap Flux Orientation Control of DC-Excited Synchronous Machines

  • Xu, Yajun;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.419-430
    • /
    • 2015
  • Flux estimation is a significant foundation of high-performance control for DC-excited synchronous motor. For almost all flux estimators, such as the flux estimator based on phase locked loop (PLL), DC drift causes fluctuations in flux magnitude. Furthermore, significant dynamic error may be introduced at transient conditions. To overcome these problems, this paper proposes an improved flux estimator for the PLL-based algorithm. Filters based on the generalized integrator are used to avoid flux fluctuation problems caused by the DC drift at the back electromotive force. Programmable low-pass filters are employed to improve the dynamic performance of the flux estimator, and the cutoff frequency of the filter is determined by the dynamic factor. The algorithm is verified by a 960V/1.6MW industrial prototype. Simulation and experimental results show that the proposed estimator can estimate the flux more accurately than the PLL-based algorithm in a cycloconverter-fed DC-excited synchronous machine vector control system.

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

Transient Surge Motion of A Turret Moored Body in Random Waves (불규칙파 중에 Turret 계류된 부유체의 천이운동해석)

  • 김동준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1991
  • A moored body in the sea is subjected to second-order wave forces as well as to linear oscillatory ones. The second-order farces contain slowly-varying components, of which the characteristic frequency can be as low as the natural frequency of horizontal motions of the moored body. As a consequence, the slowly-varying force can excite unexpectedly large horizontal excursion of the body, which may cause a serious damage on the mooring system. In design analysis of Turret-type mooring system which is one of the interesting mooring systems for a floating body. the slowly-varying drift forces and the transient motion of the system during weathervaning are very important. In this paper the slowly-varying drift forces were calculated by using the Quadratic Transfer Function with considering the second order free-wave contributions. Additionaly the transient surge motion of the moored body was simulated with including the roll of the time-memory effect. In this simulation the spring constant of the spread Turret mooring system is updated at every time step for considering the nonlinear effect.

  • PDF

Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju (제주 해양환경에 적합한 부유식 해상풍력발전기 계류선 설계)

  • Choung, Joonmo;Kim, Hyungjun;Jeon, Gi-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.300-310
    • /
    • 2014
  • This paper presents a mooring design procedure of a floating offshore wind turbine. The environment data of south offshore area of Jeju collected from Korea Hydrographic and Oceanographic Administration(KHOA) are used for hydrodynamic analyses as environmental conditions. We considered a semi-submersible type floating wind turbine based on Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform and National Renewable Energy Laboratory(NREL) 5 MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nomial sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50-year design life, respectively, longterm predictions of breaking strength and fatigue are proposed.

An improved extended Kalman filter for parameters and loads identification without collocated measurements

  • Jia He;Mengchen Qi;Zhuohui Tong;Xugang Hua;Zhengqing Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2023
  • As well-known, the extended Kalman filter (EKF) is a powerful tool for parameter identification with limited measurements. However, traditional EKF is not applicable when the external excitation is unknown. By using least-squares estimation (LSE) for force identification, an EKF with unknown input (EKF-UI) approach was recently proposed by the authors. In this approach, to ensure the influence matrix be of full column rank, the sensors have to be deployed at all the degrees-of-freedom (DOFs) corresponding to the unknown excitation, saying collocated measurements are required. However, it is not easy to guarantee that the sensors can be installed at all these locations. To circumvent this limitation, based on the idea of first-order-holder discretization (FOHD), an improved EKF with unknown input (IEKF-UI) approach is proposed in this study for the simultaneous identification of structural parameters and unknown excitation. By using projection matrix, an improved observation equation is obtained. Few displacement measurements are fused into the observation equation to avoid the so-called low-frequency drift. To avoid the ill-conditioning problem for force identification without collocated measurements, the idea of FOHD is employed. The recursive solution of the structural states and unknown loads is then analytically derived. The effectiveness of the proposed approach is validated via several numerical examples. Results show that the proposed approach is capable of satisfactorily identifying the parameters of linear and nonlinear structures and the unknown excitation applied to them.