• Title/Summary/Keyword: Low electric consumption circuit

Search Result 18, Processing Time 0.024 seconds

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF

Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices (M2M / IoT 디바이스의 정밀 위치와 자세 인식을 위한 6축 관성 센서 IC 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.82-89
    • /
    • 2014
  • Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC $0.18{\mu}m$ mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.

A Study on the Impact of HVDC Transmission System to Interconnect Large-scale Power Generation Plants to Power Grid in Korea (HVDC 송전을 이용한 동해안 신규전원의 수도권 계통 연계방안에 대한 연구)

  • Han, Su-Young;Gwon, Do-Hun;Chung, Il-Yop;Lim, Jae-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1647-1656
    • /
    • 2013
  • Although the demand for electricity has been increasing these days, it becomes more difficult to find new sites for large-scale power generation plants near urban areas due to environmental and economic issues. Therefore, new power plants are forced off to rural or desolate coastal areas. As a result, there is significant regional imbalance in power generation and consumption between urban and rural areas in South Korea. This paper investigates the feasibility of high-voltage DC (HVDC) system as a candidate for electric power transmission system from east-coastal sites to metropolitan area. To this end, this paper analyzes transient stability and dynamic impact of a HVDC transmission system and compares the results to conventional high-voltage AC (HVAC) transmission systems via PSS/E simulation. This paper also examines the effect of HVDC system to voltage variation and low-frequency resonance in the neighboring buses in the grid using ESCR(Effective Short Circuit Ratio)과 UIF(Unit Interaction Factor) indices.

A Study on Low-Power Sensor Network of Improved Power-Efficiency in Wireless Network (무선 네트워크상에서 개선된 에너지 효율을 고려한 저전력 센서 네트워크의 연구)

  • Choi, In-Hwa;Jabbar, Hamid;Hwang, Jun;Park, Gyung-Leen;Jeong, Tai-Kyeong
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.151-160
    • /
    • 2009
  • Wireless network solution is used in many area because of free mobility and easy of establishment. Sensors that compose wireless network need protocol that support wireless communication to share information each other. As representative protocol, we currently witnessed IPv6 protocol. However, due to the limitation of sensors's electric power and computing ability, it is inefficient that each sensors use this protocol. In this paper, we designed improved sensor circuit that can heighten energy efficiency in sensor network to solve these problem and composed algorithm that can pare down energy consumption using method to make unnecessary sensor in sleep-mode.

  • PDF

Improved RPV(reactive-power-variation) anti-islanding method for grid-connected three-phase PVPCS (3상 계통연계형 태양광 PCS의 단독운전검출을 위한 개선된 무효전력변동기법)

  • Lee, K.O.;Jung, Y.S.;So, J.H.;Yu, B.G.;Yu, G.J.;Choi, J.Y.;Choy, I.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1159-1160
    • /
    • 2006
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, this has raised potential problems of network protection on electrical power system. One of the numerous problems is an Island phenomenon. There has been an argument that because the probability of islanding is extremely low it may be a non-issue in practice. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an island can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficient to cause a trip, plus the time required to execute the trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. And, third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an island. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. So the verification of anti-islanding performance is strongly needed. In this paper, the authors propose the improved RPV method through considering power quality and anti-islanding capacity of grid-connected three-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation and experimental results are verified.

  • PDF

Implementation of Readout IC for $8\times8$ UV-FPA Detector ($8\times8$ UV-PPA 검출기용 Readout IC의 설계 및 제작)

  • Kim, Tae-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.503-510
    • /
    • 2006
  • Readout circuit is to convert signal occurred in a defector into suitable signal for image signal processing. In general, it has to possess functions of impedance matching with perception element, amplification, noise reduction and cell selection. It also should satisfies conditions of low-power, low-noise, linearity, uniformity, dynamic range, excellent frequency-response characteristic, and so on. The technical issues in developing image processing equipment for focal plane way (FPA) can be categorized as follow: First, ultraviolet (UV) my detector material and fine processing technology. Second, ReadOut IC (ROIC) design technology to process electric signal from detector. Last, package technology for hybrid bonding between detector and ROIC. ROIC enables intelligence and multi-function of image equipment. It is a core component for high value added commercialization ultimately. Especially, in development of high-resolution image equipment ROIC, it is necessary that high-integrated and low-power circuit design technology satisfied with design specifications such as detector characteristic, signal dynamic range, readout rate, noise characteristic, ceil pitch, power consumption and so on. In this paper, we implemented a $8\times8$ FPA prototype ROIC for reduction of period and cost. We tested unit block and overall functions of designed $8\times8$ FPA ROIC. Also, we manufactured ROIC control and image boards, and then were able to verify operation of ROIC by confirming detected image from PC's monitor through UART(Universal Asynchronous Receiver Transmitter) communication.

Reactive Power Variation Method for Anti-islanding Using Digital Phase-Locked-Loop (DPLL을 이용한 능동적 단독운전방지를 위한 무효전력변동법)

  • Lee, Ki-Ok;Yu, Byung-Gu;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. There has been an argument that it may be a non-issue in practice because the probability of islanding is extremely low. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an islanding can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficiently to cause a trip, plus the time required to execute a trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. Third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an islanding. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. Therefore the verification of anti-islanding performance is strongly needed. In this paper, improved RPV method is proposed through considering power quality and anti-islanding capacity of grid-connected single-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation results are verified.