• 제목/요약/키워드: Low drag

검색결과 291건 처리시간 0.022초

원형 디스크 주위 유동에 대한 RANS 유동해석 비교 연구 (Comparative study of flow over a circular disk using RANS turbulence models)

  • 유남규;김병재
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.88-93
    • /
    • 2021
  • For a flow normal to a circular disk, the flow separation occurs from the edge of the disk and the flow recirculation zone exists behind the disk. Many existing studies conducted simulations of flow normal to a circular disk under low Reynolds numbers. Some studies performed LES or DES simulations under high Reynolds numbers. However, comparative study for different RANS models for high Reynolds numbers is very limited. This study presents numerical simulations of a flow normal to a circular disk using Realizable k-ε model and SST k-ω model. The recirculation bubble length and drag coefficient were compared with the experimental data. The SST k-ω model showed the excellent predictions for the recirculation bubble length and drag coefficient.

Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

  • Choi, Ha-Yeon;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.367-377
    • /
    • 2015
  • Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO) orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK$^{(R)}$) Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK$^{(R)}$ Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

초공동(超空洞) 하의 수중 주행체 캐비데이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • ;최주호
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1566-1573
    • /
    • 2004
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem fur any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

마찰저항 저감을 위한 고분자 수지 합성 및 PIV 유동장 계측 (Synthesis of FDR-SPC Resin and PIV Measurement for Frictional Drag-reduction)

  • 정성우;김은영;전호환;박현;이인원
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.49-53
    • /
    • 2014
  • In this study, a novel FDR-SPC is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. In a low-Reynolds number flow measurement using PIV (Particle Image Velocimeter), a significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface.

우주환경 변화에 따른 저궤도 위성의 궤도변화 분석 (Analysis on the Impact of Space Environment on LEO Satellite Orbit)

  • 정옥철;임현정;김화영;안상일
    • 항공우주시스템공학회지
    • /
    • 제9권2호
    • /
    • pp.57-62
    • /
    • 2015
  • The satellite orbit is continuously changing due to space environment. Especially for low earth orbit, atmospheric drag plays an important role in the orbit altitude decay. Recently, solar activities are expected to be high, and relevant events are occurring frequently. In this paper, analysis on the impact of geomagnetic storm on LEO satellite orbit is presented. For this, real flight data of KOMPSAT-2, KOMPSAT-3, and KOMPSAT-5 are analyzed by using the daily decay rate of mean altitude is calculated from the orbit determination. In addition, the relationship between the solar flux and geomagnetic index, which are the metrics for solar activities, is statistically analyzed with respect to the altitude decay. The accuracy of orbit prediction with both the fixed drag coefficient and estimated one is examined with the precise orbit data as a reference. The main results shows that the improved accuracy can be achieved in case of using estimated drag coefficient.

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.82-85
    • /
    • 2008
  • 수중에서 발사체가 고속으로 주행할 때 발사체의 머리 즉, 캐비테이터 만이 물과 접촉한 상태에서 커다란 공동이 발생하여 몸체 전체를 뒤덮는 초공동현상이 발생한다. 초공동 상태에서는 발사체는 저항이 감소되어 매우 빠른 속도를 낼 수 있게 된다. 더욱이 캐비테이터가 적합한 형상을 가지게 되면 매우 낮은 압력저항을 유지하고 전체적인 저항도 획기적으로 줄일 수 있기 때문에 본 연구에서는 주어진 작용환경 하에서 저항을 최소화 하기위한 최적의 캐비테이터 형상최적설계 문제를 고려하였다. 그리고 효율적인 캐비테이터 형상최적화를 위해 공동과 캐비테이터 형상을 하나의 죄적화로 변환한 동시최적화기법을 수행하였다.

  • PDF

강내탄도 전산해석 코드 개발과 항력 모델에 따른 이상유동 분석 (Development of Numerical Code for Interior Ballistics and Analysis of Two-phase Flow according to Drag Models)

  • 성형건;장진성;유승령;노태성
    • 한국추진공학회지
    • /
    • 제15권6호
    • /
    • pp.38-46
    • /
    • 2011
  • 점화제 주입 특성을 모사할 수 있는 2차원 이상유동의 강내탄도 해석코드 개발하였다. 장약인 추진제의 연소 해석을 위해 Eulerian-Lagrangian 접근법과 LSHUS 기법을 적용하였다. 탄자의 이동에 따른 이동경계면의 해석을 위해 Ghost Cell Extrapolation method를 사용하였다. 개발된 2차원 강내탄도 해석코드는 무차원 강내탄도 해석 코드인 IBHVG2와 기존에 개발된 1차원 강내탄도 해석코드와 비교 검증하였다. 항력식에 따른 이상유동의 비교에서 항력식이 탄자탈출속도의 수치적 해석에 영향을 주는 것을 확인하였다.

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1876-1881
    • /
    • 2003
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem for any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

  • PDF

마이크로 구조를 이용한 유체 표면마찰의 감소 (Friction Drag Reduction using Microstructured Surfaces)

  • 박치열;배승일;이상민;고종수;정광효
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.117-122
    • /
    • 2009
  • The hexagonal network-type PDMS microstructures were fabricated and they were employed to low-friction drag surfaces. While the lowest contact angle measured from the smooth surface was $108^{\circ}$ the highest contact angle measured from the microstructured surfaces was $145^{\circ}$ The moving speed of bullet-type capsule attached with a PDMS pad of smooth surface ($CA=108^{\circ}$) was 0.1261 m/s and that with a PDMS pad of microstructured surface ($CA=145^{\circ}$) was 0.1464 m/s. Compared with the smooth surface, the microstructured surface showed 16.1% higher moving speed. The network-type microstructures have a composite surface that is composed with air and PDMS solid. Therefore, the surface does not wet: rather water is lifted by the microstructures. Because of the composite surface, water shows slip-flow on the microstructures, and thus friction drag can be reduced.

회전익 항공기 형상의 기체공력 특성에 관한 실험적 연구 (An Experimental Study of Fuselage Drag and Stability Characteristics of a Helicopter Configuration)

  • 오세윤;박금룡;이종건;안승기
    • 한국항공우주학회지
    • /
    • 제33권9호
    • /
    • pp.9-15
    • /
    • 2005
  • 국방과학연구소 풍동실험실에서는 회전익 항공기 개발에 소요되는 관련 풍동시험 기법의 확립과 형상연구 관련 시험자료의 확보를 위한 실험적 연구를 수행하였다. 본 연구는 회전익 항공기 동체구성품의 형상조합에 따른 항력증분과 안정성 평가를 위한 공기역학적 특성의 추출을 목적으로 하였으며, 풍동시험에는 모듈화된 1:8 축척의 회전익 항공기 동체형상과 500 rpm으로 회전하는 로터허브의 부분모형이 사용되었다. 시험결과들을 기존의 유사 항공기 시험결과들과 비교하였으며, 기존 연구결과들과 잘 부합됨을 확인하였다.