• 제목/요약/키워드: Low drag

검색결과 292건 처리시간 0.025초

분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구 (S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion)

  • 박지훈;장성준
    • 자원환경지질
    • /
    • 제56권4호
    • /
    • pp.365-384
    • /
    • 2023
  • 서태평양에 위치한 총 173개의 지진 관측소에서 획득한 2,026개의 지진 자료에 분할 파형 역산을 적용하여 서태평양 지역 맨틀 전이대 깊이까지 S파 등방성 속도 및 방사 이방성에 대한 연구를 수행했다. 그 결과 필리핀해판의 경우 페러스-벨라 분지(Parece-Vela basin)에서 고속도 이상이 30 km 깊이까지 나타나는 것에 비해 서필리핀 분지(West Philippine basin)에서 고속도 이상이 50 km 깊이까지 유지되었다. 페러스-벨라 분지 하부 약 80 km 깊이부터 나타나는 저속도 이상이 깊이가 깊어짐에 따라 서필리핀 분지로 확장되는 경향을 보였는데 이는 페러스-벨라 분지와 서필리핀 분지 사이의 연령차이에 의한 것으로 보인다. 또한 캐롤라인 해저 산열(Caroline seamount chain) 및 캐롤라인 판의 하부에서 강한 저속도 이상이 약 200 km 깊이까지 보인다. 방사 이방성 모델의 경우 서태평양에서 전반적으로 양의 이방성에 우세하게 나타났으며 페러스-벨라 분지에서 약 50 km 깊이까지, 마리아나 해구를 따라 섭입하는 태평양판의 약 220 km 깊이부터 음의 이방성이 관측되었다. 캐롤라인 해저산열 하부 약 200 km 깊이까지 강한 양의 이방성이 나타났는데 이는 해저산열을 형성한 플룸과 이동하는 태평양판 사이에 발생한 끌림(drag)에 의한 것으로 보인다. 온통-자바 해대(Ontong-Java plateau) 지역 하부에서는 40 ~ 180 km 깊이에서 고속도 이상이 발견되었으며, 이는 탈수된 플룸 물질의 부착으로 인한 비정상적으로 두꺼운 암석권의 존재를 나타낸다.

저 레이놀즈 수 영역에서 날갯짓 비행체 공력 모델의 실험적 검증 (Experimental Validation of Ornithopter Aerodynamic Model in Low Reynolds Number Regime)

  • 이준성;김대관;한재흥
    • 한국항공우주학회지
    • /
    • 제38권7호
    • /
    • pp.647-654
    • /
    • 2010
  • 본 연구에서는 날갯짓 비행체 날개의 유체-구조 연계를 고려한 설계나 날갯짓 비행체의 비행 동역학 및 제어 시뮬레이션에 적용 가능한 효율적인 공력모델을 제안하고, 풍동 실험을 통해 공력모델의 특성을 검증하고자 한다. 날갯짓 비행체는 저 레이놀즈 수 영역의 비정상 유동장의 지배를 받기 때문에, 이 영역에서 날개 운동에 따른 공력을 효과적으로 측정할 수 있도록 풍동실험장치를 설계 및 개발하였다. 본 연구의 실험장치 특성상 힘을 측정하는 2축-로드셀은 비관성계에 있기 때문에, 순수한 날개의 공력을 측정하기 위해서는 관성력을 보정해주어야 하며, 이에 대한 방법론을 수립하였다. 최종적으로 유동속도, 날개의 운동 주파수 및 고정 받음각에 따라 날개에 작용하는 양력 및 항력의 평균값 및 평균 제곱근 값을 비교함으로서 실험결과와 공력모델의 특성을 비교 검증하였다.

저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구 (A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion)

  • 이윤석;김순갑
    • 한국항해학회지
    • /
    • 제23권2호
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

높은 솔리디티를 갖는 자이로밀의 공기역학적 특성 (Aerodynamic Characteristics of Giromill with High Solidity)

  • 이주희;유영소
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1273-1283
    • /
    • 2011
  • 3 차원 비정상유동해석을 통하여 자이로밀의 공기역학적 특성을 고찰하였다. 일반적으로 소형자이로밀은 구조가 간단하고 솔리디티가 높아 제작이 쉽고 자구동(self-starting)이 가능하다는 장점을 가지고 있다. 그러나 TSR (tip speed ratio)가 4~7 인 다리우스풍력발전기와 다르게 1~3 정도로 매우 낮다. 본 연구에 사용한 자이로밀은 일정한 단면을 가진 3 개의 직선날개로 구성되어 있으며 솔리디티는 0.75 이다. 솔리디티가 매우 낮은 다리우스풍력발전기와 다르게 자이로밀은 TSR 이 증가함에 따라 날개 상호간의 간섭과 하류에 위치하는 날개로 유입되는 유동속도의 급격한 감소로 인하여 양력이 감소하고 날개의 회전속도에 의하여 주변의 공기가 가속되면서 항력의 증가로 성능이 저하되었다. 이로 인하여 TSR 이 2.4에서 최고의 성능을 나타내며 이후로 급격히 감소하는 것을 알 수 있었다.

Design of an Elliptical Orbit for High-Resolution Optical Observation at a Very Low Altitude over the Korean Peninsula

  • Dongwoo Kim;Taejin Chung
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권1호
    • /
    • pp.35-44
    • /
    • 2023
  • Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56°. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

고속 어뢰의 인공 초공동 특성에 대한 실험 연구 (Experimental Study on Artificial Supercavitation of the High Speed Torpedo)

  • 안병권;정소원;김지혜;정영래;김선범
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

급 출발하는 정방실린더 후류의 비정상 점성유동의 초기거동 (The Early Stage Behavior of Unsteady Viscous Flows past an Impulsively Started Square Cylinder)

  • 진동식;정재훈;안철오;이상환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.259-264
    • /
    • 2001
  • High-resolution simulations using vortex methods have been performed for simulating unsteady viscous flows around an impulsively started square cylinder. In order to investigate the phenomenon from laminar to transition flow, simulations are performed for Reynolds numbers 25, 50, 150 and 250. At extremely low Reynolds number, flow around a square cylinder is known to separate at the trailing edges rather than the leading edges. With an increase of Reynolds number, the flow separation at the leading edges will be developed. The main flow characteristics of developing recirculation region and separations from leading and trailing edges are studied with the unsteady behavior of the wake after the cylinder starts impulsively. A notable change in the flow evolution is found at Re=150, that is, it is shown that the flow separations begin at both leading and trailing edges of the square cylinder. On the other hand, when Re=250, the strong secondary vorticity from the rear surfaces of the square cylinder increases the drag coefficient as the primary vortex layer is pushed outwards. The comparisons between results of the present study and experimental data show a good consistency.

  • PDF

고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측 (Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell)

  • 양장식;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

Performance Comparison of Two Airfoil Rotor Designs for an Agricultural Unmanned Helicopter

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: The most important element of an agricultural helicopter is the rotor blade realizing lift force. In order to improve the performance of the rotor blades, two types (KA152313 and KB203611) of airfoils were designed and compared. Methods: The nose shape of the KB203611 airfoil was 'drooped' and 'sharp' compared to the leading edge of the KA152313 airfoil. The performance of the experimental airfoils was simulated using CFD-ACE program, and lifts were measured in situ using the 'AgroHeli-4G', a prototype helicopter. Results: Simulated lifts of the blade with the KA152313 airfoil showed proper values for a wide range of angles of attack between $14^{\circ}{\sim}18^{\circ}$, while the simulated lift of the KB203611 blade exhibited maximum values near $13^{\circ}{\sim}14^{\circ}$. In the lift measurements, the range of operable angles of attack was a collective pitch angle at the grip (GP) of $12^{\circ}{\sim}18^{\circ}$ for the KA152313 blade. On the other hand, the range of angles of attack for the KB203611 blade was a GP of $12^{\circ}{\sim}14^{\circ}$. Conclusions: The blade of KA152313 performed well over a wide range of AoAs and the blade of KB203611 performed better at low AoAs. In this study, a variative airfoil blade, gradually emerging from grip to tip using the two different airfoils, was suggested.