• 제목/요약/키워드: Low drag

검색결과 291건 처리시간 0.025초

An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Convective Boiling

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.236-255
    • /
    • 1999
  • An improved mechanistic model was developed to predict a convective boiling critical heat flux (CHF) in the vertical round tubes with uniform heat fluxes. The CHF formula for subcooled and low quality boiling was derived from the local conservation equations of mass, energy and momentum, together with appropriate constitutive relations. The model is characterized by the momentum balance equation to determine the limiting transverse interchange of mass flux crossing the interface of wall bubbly layer and core by taking account of the convective shear effect due to the frictional drag on the wall-attached bubbles. Comparison between the present model predictions and experimental CHF data from several sources shows good agreement over a wide range of How conditions. The present model shows comparable prediction accuracy with the CHF look-up table of Groeneveld et al. Also the model correctly accounts for the effects of flow variables as well as geometry parameters.

  • PDF

반작용휠 저속구간에서의 위성자세제어 (Satellite Attitude Control on Reaction Wheel Low-Speed Region)

  • 손준원;박영웅
    • 한국항공우주학회지
    • /
    • 제45권11호
    • /
    • pp.967-974
    • /
    • 2017
  • 반작용휠은 저속구간에서 마찰로 인해서 비선형 토크 응답을 보인다. 따라서 이 구간에서는 위성의 정밀한 자세제어를 달성하기 어렵다. 기존 연구들은 마찰력 보상이나 디더명령을 인가하는 방법을 사용하여 본 문제를 해결하려 하였다. 하지만 마찰력 모델링의 어려움이나 휠속도의 빈번한 영점 교차 때문에, 이러한 방법을 실제 위성 자세제어에 적용하기에는 어려움이 있다. 이를 해결하기 위해서, 자세오차에 따라서 자세제어기의 이득값을 조절하는 방법을 제안한다.

복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석 (Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System)

  • 이준용;최낙준;최영도
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

Experimental investigation on vortex induced forces of oscillating cylinder at high Reynolds number

  • Xu, Yuwang;Fu, Shixiao;Chen, Ying;Zhong, Qian;Fan, Dixia
    • Ocean Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.167-180
    • /
    • 2013
  • Hydrodynamic characteristics of a bluff cylinder oscillating along transverse direction in steady flow were experimentally investigated at Reynolds number of $2{\times}10^5$. The effects of non-dimensional frequency, oscillating amplitude and Reynolds number on drag force, lift force and phase angle are studied. Vortex shedding mechanics is applied to explain the experimental results. The results show that explicit similarities exist for hydrodynamic characteristics of an oscillating cylinder in high and low Reynolds number within subcritical regime. Consequently, it is reasonable to utilize the test data at low Reynolds number to predict vortex induced vibration of risers in real sea state when the Reynolds numbers are in the same regime.

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

탄소 섬유를 강화재로 사용한 자동차용 마찰재의 마찰특성에 관한 연구 (A Study on the Friction Characteristics of Automotive Brake Pads Reinforced with Carbon Fibers)

  • 정기영;장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.330-336
    • /
    • 1998
  • The friction and wear characteristics of automotive friction materials reinforced with carbon fibers were studied using a direct drive brake dynamometer. Two types of model friction materials, a low-metallic and an NAO type, were prepared and each of the materials was modified by substituting 5 vol% of carbon fibers with other reinforcing fiber used in the model formulations. Drag tests were carried out to investigate the friction properties of these materials at various braking conditions. Results showed that the modified friction materials were improved in the friction stability and the wear resistance.

  • PDF

GROUND TRACK ACQUISITION AND MAINTENANCE MANEUVER MODELING FOR LOW-EARTH ORBIT SATELLITE

  • Lee, Byoung-Sun;Eun, Jong-Woo;Webb, Charles-E.
    • Journal of Astronomy and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.355-366
    • /
    • 1997
  • This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  • PDF

분할판을 이용한 원형실린더 유동소음의 제어 (Control of flow-induced noise from a circular cylinder using a splitter plate)

  • 유동현;최해천;최명렬;강신형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.636-642
    • /
    • 1997
  • Laminar vortex shedding behind a circular cylinder with and without splitter plates attached to the circular cylinder at low Reynolds numbers are simulated by solving the unsteady incompressible Navier-Strokes equations. The Strouhal number, lift and drag rapidly change with the splitter plate. Far-field noise from the vortex shedding behind the cylinder is computed using the Lighthill acoustic analogy and the Curle's solution for the Lighthill equation. The acoustic source functions are obtained from the computed near-field velocity and pressure. Numerical results show that the volume quadrupole noise is small at low Mach numbers, compared with the surface dipole noise. Also the amplitude and frequency of the acoustic density fluctuations are varied with the length of splitter plates. The scattering effects at the edge of a splitter plate are considered by using the half-plane Green's function.

  • PDF

항공기 저속 세로축 공력 계수 예측에 관한 연구 (Prediction of the Logitudinal Aerodynamic Coefficients of the Aircraft at Low Speed)

  • 강정훈
    • 한국항공운항학회지
    • /
    • 제8권1호
    • /
    • pp.83-95
    • /
    • 2000
  • Lift, drag, pitching moment, what we call longitudinal aerodynamic coefficient, effects airplanes directly, so the method to find the accurate result quickly is an important factor from the beginning of the aircraft design. There are different ways to find aerodynamic coefficient such as empirical methods, numerical analysis methods, wind tunnel tests, and finally through an actual flight tests, but choosing the best methods depends on the due date or the cost. The accuracy varies on each design level, but all this methods have relationship to complement and balance each other, so by combining proper methods, the best result can be obtained. At this paper, empirical methods and numerical analysis method were experimented, compared, and reviewed to find the availability of each method and by combining two methods accurate result was obtained. So, we applied this methods to predict the aerodynamic coefficient on cruise configuration aircraft, and was able to obtain more accurate result on the low speed longitudinal aerodynamic coefficient. Also by watching there result, we are able to predict the errors before the actual wind tunnel test.

  • PDF

AZ31 마그네슘 합금의 고온 크리프 특성 (Creep Properties of AZ31 Magnesium Alloy at Elevated Temperature)

  • 정진성;김호경
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.20-26
    • /
    • 2009
  • The creep deformation behavior of AZ31 magnesium alloy was examined in the temperature range from 573 to 673K (0.62 to 0.73 Tm) under various constant stresses covering low strain rate range from $4{\times}10^{-9}\;s^{-1}$ to $2{\times}10^{-2}\;s^{-1}$. At low stress level, the stress exponent for the steady-state creep rate was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute-atmospherebreakaway concept.