• Title/Summary/Keyword: Low dose CT

Search Result 204, Processing Time 0.027 seconds

Usefulness of Low Dose Oral Contrast Media in $^{18}F-FDG$ PET/CT ($^{18}F-FDG$ PET/CT에서 저용량 경구용 조영제의 유용성)

  • An Young-Sil;Yoon Joon-Kee;Hong Seon Pyo;Joh Chul-Woo;Yoon Seok-Nam
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.257-262
    • /
    • 2006
  • Purpose: The standard protocol using large volume of oral contrast media may cause gastrointestinal discomfort and contrast-related artifacts in PET/CT. The aim of this study was to evaluate the usefulness of low dose oral contrast in $^{18}F-FDG$ PET/CT. Materials and Methods: We retrospectively reviewed the whole-body PET/CT images in a total of 435 patients. About 200 ml of oval contrast agent (barium sulfate) was administered immediately before injection of $^{18}F-FDG$. The FDG uptake of intestines was analyzed by visual and semi- quantitative method on transaxial, coronal and saggital planes. Results: Seventy (16%, 113 sites) of 435 images showed high FDG uptake (peak SUV > 4); 50 (74%, 84 sites) with diffuse and 20 (15%, 29 sites) with focal uptake. The most commonly delivered site of oral contrast media was small bowel (n=27, 39%). On PET/CT images, FDG uptake coexisted with oral contrast media in 26 patients (54%, 38 sites) with diffuse pattern and 9 (45%, 9 sites) with focal pattern, and by sites, those were 38 (45%) and 9 (31%), respectively. In small bowel regions, the proportion of coexistence reached as high as 61% (29/47 sites). A visual analysis of available non-attenuation corrected PET images of 27 matched regions revealed no contrast-related artifact. Conclusion: We concluded that the application of low dose contrast media could be helpful in the evaluation of abdominal uptake in the FDG PET/CT image.

Review of the Radiation Risk and Clinical Efficacy Associated with Computed Tomography Cancer Screening (암의 조기발견을 위한 CT촬영에서의 임상적 효능과 방사선위해에 대한 고찰)

  • Kim, Hyun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.214-227
    • /
    • 2013
  • Computed tomographic scan as a screening procedures in asymptomatic individuals has seen a steady increase with the introduction of multiple-raw detector CT scanners. This report provides a brief review of the current controversy surrounding CT cancer screening, with a focus on the radiation induced cancer risks and clinical efficacy. 1. A large study of patients at high risk of lung cancer(the National Lung Screening Trial[NLST]) showed that CT screening reduced cancer deaths by 20%(1.33% in those screened compared with 1.67% in those not screened). The rate of positive screening tests was 24.2% and 96.4% of the positive screening results in the low-dose CT group were false-positive. Radiation induced lung cancer risk was estimated the most important in screening population because ERR of radiation induced lung cancer does not show the decrease with increasing age and synergistic connection between smoking and radiation risk. Therefore, the radiation risk may be on the same order of magnitude as the benefit observed in the NLST. Optimal screening strategy remain uncertain, CT lung cancer screening is not yet ready for implementation. 2. Computed tomographic colonography is as good as colonoscopy for detecting colon cancer and is almost as good as colonoscopy for detecting advanced adenomas, but significantly less sensitive and specific for smaller lesions and disadvantageous for subsequent therapeutic optical colonoscopy if polyps are detected. The average effective dose from CT colonography was estimated 8-10 $mS{\nu}$, which could be a significant dose if administered routinely within the population over many years. CT colonography should a) achieve at least 90% sensitivity and specificity in the size category from 6 and 10 mm, b) offer non-cathartic bowl preparation and c) be optimized and standardized CT parameters if it is to be used for mass screening. 3. There is little evidence that demonstrates, for whole-body scanning, the benefit outweighs the detriment. This test found large portion of patient(86~90.8%) had at least one abnormal finding, whereas only 2% were estimated to have clinically significant disease. Annual scans from ages 45 to 75 years would accrue an estimated lifetime cancer mortality risk of 1.9%. There is no group within the medical community that recommends whole-body CT. No good studies indicate the accuracy of screening CT, at this time. The benefit/risk balance for any of the commonly suggested CT screening techniques has yet to be established. These areas need further research. Therefore wild screening should be avoided.

Evaluation of Obstructive Pulmonary Function Impairment Risks in Pulmonary Emphysema Detected by Low-Dose CT: Compared with Simple Digital Radiography (단순 디지털 촬영과 저선량 CT의 폐기종 소견으로부터 폐쇄성 폐기능 장애 위험 비교)

  • Lee, Won-Jeong;Lee, Jeong-Oh;Choi, Byung-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Background: Pulmonary emphysema (PE) is major cause of obstructive pulmonary function impairment (OPFI), which is diagnosed by spirometry. PE by high resolution CT is known to be correlated with OPFI. Recently, low dose CT (LDCT) has been increasingly used for screening interstitial lung diseases including PE. The aim of this study was to evaluate OPFI risks of subjects with PE detected by LDCT compared with those detected by simple digital radiography (SDR). Methods: LDCT and spirometry were administered to 266 inorganic dust exposed retired workers, from May 30, 2007 to August 31, 2008. This study was approved by our institutional review board and informed consent was obtained. OPFI risk was defined as less than 0.7 of forced expiratory volume in one second (FEV1)/forced vital capacity (FVC), and relative risk (RR) of OPFI of PE was calculated by multiple logistic regression analysis. Results: Of the 266 subjects, PE was found in 28 subjects (10.5%) by LDCT and in 11 subjects (4.1%) by SDR; agreement was relatively low (kappa value=0.32, p<0.001). FEV1 and FEV1/FVC were significantly different between PE and no PE groups determined by either SDR or LDCT. The differences between groups were larger when the groups were divided by the findings of SDR. When PE was present in either LDCT or SDR assays, the RRs of OPFI were 2.34 and 8.65, respectively. Conclusion: LDCT showed significantly higher sensitivity than SDR for detecting PE, especially low grade PE, in which pulmonary function is not affected. As a result, the OPFI risks in the PE group by LDCT was lower than that in the PE group by SDR.

A Consideration of Apron's Shielding in Nuclear Medicine Working Environment (PET검사 작업환경에 있어서 APRON의 방어에 대한 고찰)

  • Lee, Seong-wook;Kim, Seung-hyun;Ji, Bong-geun;Lee, Dong-wook;Kim, Jeong-soo;Kim, Gyeong-mok;Jang, Young-do;Bang, Chan-seok;Baek, Jong-hoon;Lee, In-soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.110-114
    • /
    • 2014
  • Purpose: The advancement in PET/CT test devices has decreased the test time and popularized the test, and PET/CT tests have continuously increased. However, this increases the exposure dose of radiation workers, too. This study aims to measure the radiation shielding rate of $^{18}F-FDG$ with a strong energy and the shielding effect when worker wore an apron during the PET/CT test. Also, this study compared the shielding rate with $^{99m}TC$ to minimize the exposure dose of radiation workers. Materials and Methods: This study targeted 10 patients who visited in this hospital for the PET/CT test for 8 days from May 2nd to 10th 2013, and the $^{18}F-FDG$ distribution room, patient relaxing room (stand by room after $^{18}F-FDG$ injection) and PET/CT test room were chosen as measuring spots. Then, the changes in the dose rate were measured before and after the application of the APRON. For an accurate measurement, the distance from patients or sources was fixed at 1M. Also, the same method applied to $^{99m}TC's$ Source in order to compare the reduction in the dose by the Apron. Results: 1) When there was only L-block in the $^{18}F-FDG$ distribution room, the average dose rate was $0.32{\mu}Sv$, and in the case of L-blockK+ apron, it was $0.23{\mu}Sv$. The differences in the dose and dose rate between the two cases were respectively, $0.09{\mu}Sv$ and 26%. 2) When there was no apron in the relaxing room, the average dose rate was $33.1{\mu}Sv$, and when there was an apron, it was $22.3{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $10.8{\mu}Sv$ and 33%. 3) When there was no APRON in the PET/CT room, the average dose rate was $6.9{\mu}Sv$, and there was an APRON, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $1.4{\mu}Sv$ and 25%. 4) When there was no apron, the average dose rate of $^{99m}TC$ was $23.7{\mu}Sv$, and when there was an apron, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $18.2{\mu}Sv$ and 77%. Conclusion: According to the result of the experiment, $^{99m}TC$ injected into patients showed an average shielding rate of 77%, and $^{18F}FDG$ showed a relatively low shielding rate of 27%. When comparing the sources only, $^{18F}FDG$ showed a shielding rate of 17%, and $^{99m}TC$'s was 77%. Though it had a lower shielding effect than $^{99m}TC$, $^{18}F-FDG$ also had a shielding effect on the apron. Therefore, it is considered that wearing an apron appropriate for high energy like $^{18}F-FDG$ would minimize the exposure dose of radiation workers.

  • PDF

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

Comparison of CT Image Performance with or without Tin Filter based on Blind Image Quality Evaluation Method (블라인드 품질 평가 방법을 사용한 주석필터 사용 유무에 따른 CT 영상 특성 비교)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.301-306
    • /
    • 2021
  • The use of tin filters as a way to reduce the medical radiation in computed tomography (CT). However, due to the changed X-ray spectrum with the use of tin filters, disease diagnosis could be affected because it appears as images of different impressions from previous images. Therefore, this study evaluates the changes in images when using tin filter and high pitch in chest low-dose CT. In this study, images were acquired in groups of three for comparison. Group 1 did not apply to tin filter, and used the existing pitch 0.8. Group 2 used a tin filter, pitch 0.8, Group 3 used a tin filter, and pitch 2.5. To compare the image quality, the natural image quality evaluator (NIQE) and the blind/referenceless image quality evaluator (BRISQUE) were used among the blind quality evaluation factors depended on a no-reference basis. As a result, the NIQE values were low in the order of Group 1, Group 3, and Group 2. BRISQUE values were low in the order of Group 3, Group 2 and Group 1. This study confirms the superiority of images of tin filter and high pitch techniques in chest low-dose CT, which is considered to be a fundamental study for acquiring accurate images of patients with difficult breathing control.

Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan (흉부 CT 검사 시 저 관전압 영상의 화질평가에 관한 연구)

  • Kim, Hyun-Ju;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.135-141
    • /
    • 2010
  • Purpose : The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects and Methods : Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). Results : CT value of chest image increased at 100 kVp by 14.06%~27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Conclusion : Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients.

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

Evaluating applicability of metal artifact reduction algorithm for head & neck radiation treatment planning CT (Metal artifact reduction algorithm의 두경부 CT에 대한 적용 가능성 평가)

  • Son, Sang Jun;Park, Jang Pil;Kim, Min Jeong;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • Purpose : The purpose of this study is evaluation for the applicability of O-MAR(Metal artifact Reduction for Orthopedic Implants)(ver. 3.6.0, Philips, Netherlands) in head & neck radiation treatment planning CT with metal artifact created by dental implant. Materials and Methods : All of the in this study's CT images were scanned by Brilliance Big Bore CT(Philips, Netherlands) at 120kVp, 2mm sliced and Metal artifact reduced by O-MAR. To compare the original and reconstructed CT images worked on RTPS(Eclipse ver 10.0.42, Varian, USA). In order to test the basic performance of the O-MAR, The phantom was made to create metal artifact by dental implant and other phantoms used for without artifact images. To measure a difference of HU in with artifact images and without artifact images, homogeneous phantom and inhomogeneous phantoms were used with cerrobend rods. Each of images were compared a difference of HU in ROIs. And also, 1 case of patient's original CT image applied O-MAR and density corrected CT were evaluated for dose distributions with SNC Patient(Sun Nuclear Co., USA). Results : In cases of head&neck phantom, the difference of dose distibution is appeared 99.8% gamma passing rate(criteria 2 mm / 2%) between original and CT images applied O-MAR. And 98.5% appeared in patient case, among original CT, O-MAR and density corrected CT. The difference of total dose distribution is less than 2% that appeared both phantom and patient case study. Though the dose deviations are little, there are still matters to discuss that the dose deviations are concentrated so locally. In this study, The quality of all images applied O-MAR was improved. Unexpectedly, Increase of max. HU was founded in air cavity of the O-MAR images compare to cavity of the original images and wrong corrections were appeared, too. Conclusion : The result of study assuming restrained case of O-MAR adapted to near skin and low density area, it appeared image distortion and artifact correction simultaneously. In O-MAR CT, air cavity area even turned tissue HU by wrong correction was founded, too. Consequentially, It seems O-MAR algorithm is not perfect to distinguish air cavity and photon starvation artifact. Nevertheless, the differences of HU and dose distribution are not a huge that is not suitable for clinical use. And there are more advantages in clinic for improved quality of CT images and DRRs, precision of contouring OARs or tumors and correcting artifact area. So original and O-MAR CT must be used together in clinic for more accurate treatment plan.

Analysis of Dose Reduction Rate with Dose Modulation Technic Depending on BMI (PET/CT검사에서 Dose Modulation Technic 적용시 BMI에 따른 선량 감소율 분석)

  • Kim, Jung Wook;Park, Se Yun;Jo, Young Jun;Park, Jong Yeop
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.25-28
    • /
    • 2012
  • Purpose : It is important to reduce radiation dose associated with computed tomography (CT) scanning to as low as reasonably achievable (ALARA). With Dose Modulation Technic, user select a desired image quality and the system adapts tube current to obtain the desired image quality with greater radiation dose efficiency. In this paper, we presents a comprehensive description of fundamentals, clinical applications and radiation dose benefits of Dose Modulation Technic depending on Body Mass Index(BMI). Materials and Methods : In this study, 149 patients were examined(The mean age : $58{\pm}12.4$ years old). Biograph True Point 40 (Siemens, USA) and Gemini TF 64 (Philips. Cleveland) were used for equipment. When we used Care Dose 4D (Siemens, USA) and D-dom (Philips, Cleveland), we measured dose reduction and Computed Tomography Dose Index (CTDI) depending on BMI. Then we analyze data using SPSS Ver.18. Results : When we used Care Dose 4D, p-value is considered statistically significant by groups with the result that we compared Care Dose 4D with D-dom. On the other hand, p-value isn't considered statistically significant by groups using D-dom. Conclusion : Dose modulation based on the projection angle didn't affect degree of obesity. And When using Care Dose 4D, dose reduction rate in the normal patients were higher than the obese. In this study, there are errors on somato type. So I think more research have to be done. Then application of Dose Modulation technic can help in maintaining acceptable image quality while reducing radiation dose by 20-60% in most instances.

  • PDF