• Title/Summary/Keyword: Low doping

Search Result 509, Processing Time 0.022 seconds

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

Metabolism of Triprolidine in Rat (흰쥐에서의 트리프로리딘의 대사)

  • Jung, Byung-Hwa;Eom, Khee-Dong;Yoo, Young-Soo;Chung, Bong-Chul;Park, Jong-Sei
    • YAKHAK HOEJI
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 1992
  • The metabolic profile of triprolidine, 2-[1-(4-methylphenyl)-3-(1-pyrrolidinyl-1-propenyl)] pyridine, was determined in rat urine and bile. The free fractions of urinary and biliary extracts were obtained without hydrolysis, and the conjugated fractions of extracts were obtained with enzyme hydrolysis using ${\beta}-glucuronidase$ from Escherichia coli. The mixture of N-methyl-N-trimethylsilyltrifluoroacetamide/trimethylsilyl chloride (100 : 1, v/v) was used to derivatize the extracts and then analyzed by gas chromatography/mass spectrometry. Hydroxymethyltriprolidine, hydroxytriprolidine, triprolidine carboxylic acid, dihydroxytriprolidine 1, dihydroxytriprolidine 2, oxotriprolidine carboxylic acid and unchanged triprolidine were detected in rat urine and bile, which were obtained after oral treatment with triprolidine hydrochloride. The maximum urinary excretion rate of triprolidine and hydroxymethyltriprolidine which were extracted from free fraction was at 1 to 2 hours after drug administration. Hydroxymethyltriprolidine was detected in conjugated fraction, and the maximum urinary excretion rate of that metabolite was at 2 to 3 hours in rat. In rat bile analysis, triprolidine was detected only in free fraction and its biliary excretion rate showed the maximum within 30 minutes after drug administration and decreased continuously thereafter. The excretion percentage of triprolidine and hydroxymethyltriprolidine to the initial dose of the parent drug in bile and urine of rats were all low.

  • PDF

Characteristics of Polycrystalline β-SiC Films Deposited by LPCVD with Different Doping Concentration

  • Noh, Sang-Soo;Lee, Eung-Ahn;Fu, Xiaoan;Li, Chen;Mehregany, Mehran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.245-248
    • /
    • 2005
  • The physical and electrical properties of polycrystalline $\beta$-SiC were studied according to different nitrogen doping concentration. Nitrogen-doped SiC films were deposited by LPCVD(1ow pressure chemical vapor deposition) at $900^{\circ}C$ and 2 torr using $100\%\;H_2SiCl_2$ (35 sccm) and $5 \%\;C_2H_2$ in $H_2$(180 sccm) as the Si and C precursors, and $1\%\;NH_3$ in $H_2$(20-100 sccm) as the dopant source gas. The resistivity of SiC films decreased from $1.466{\Omega}{\cdot}cm$ with $NH_3$ of 20 sccm to $0.0358{\Omega}{\cdot}cm$ with 100 sccm. The surface roughness and crystalline structure of $\beta$-SiC did not depend upon the dopant concentration. The average surface roughness for each sample 19-21 nm and the average surface grain size is 165 nm. The peaks of SiC(111), SiC(220), SiC(311) and SiC(222) appeared in polycrystalline $\beta$-SiC films deposited on $Si/SiO_2$ substrate in XRD(X-ray diffraction) analysis. Resistance of nitrogen-doped SiC films decreased with increasing temperature. The variation of resistance ratio is much bigger in low doping, but the linearity of temperature dependent resistance variation is better in high doping. In case of SiC films deposited with 20 sccm and 100 sccm of $1\%\;NH_3$, the average of TCR(temperature coefficient of resistance) is -3456.1 ppm/$^{\circ}C$ and -1171.5 ppm/$^{\circ}C$, respectively.

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor (리튬이온 커패시터의 음극도핑 및 전기화학특성 연구)

  • CHOI, SEONGUK;PARK, DONGJUN;HWANG, GABJIN;RYU, CHEOLHWI
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.

Preparation of Gas Sensors with Nanostructured SnO2 Thick Films with Different Pd Doping Concetrations by an Ink Dropping Method

  • Yoon, Hee Soo;Kim, Jun Hyung;Kim, Hyun Jong;Lee, Ho Nyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Pd-doped $SnO_2$ thick film with a pure tetragonal phase was prepared on patterned Pt electrodes by an ink dropping method. Nanostructured $SnO_2$ powder with a diameter of 10 nm was obtained by a modified hydrazine method. Then the ink solution was fabricated by mixing water, glycerol, bicine and the Pd-doped $SnO_2$ powder. When the Pd doping concentration was increased, the grain size of the Pd-doped $SnO_2$ thick film became smaller. However, an agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The orthorhombic phase disappeared even at a low Pd doping concentration and a PdO peak was obtained for a high Pd doping concentration. The crack-free Pd-doped $SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of the patterned Pt electrodes by the optimized ink dropping method. The prepared 3 wt% Pd-doped $SnO_2$ thick films showed monoxide gas responses ($R_{air}/R_{CO}$) of 4.0 and 35.6 for 100 and 5000 ppm, respectively.

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Effect of Anatase TiO2 Doping Power on Electrical, Optical and Structural Properties of Multicomponent TiO2-Doped ITO Electrodes (아나타세 TiO2 도핑파워가 다성분계 TiO2-ITO 투명 전극의 전기적, 광학적, 구조적 특성에 미치는 효과)

  • Lim, Jong-Wook;Choi, Yoon-Young;Cho, Chung-Ki;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.371-376
    • /
    • 2011
  • We report on the effects of $TiO_2$ doping power on the characteristics of multicomponent $TiO_2$-ITO (TITO) electrodes prepared by a multi-target sputtering system with tilted cathode guns. Both as-deposited and annealed TITO electrodes showed linearly increased sheet resistance and resistivity with increasing $TiO_2$ doping power. However, the TITO electrodes exhibited a fairly high optical transmittance regardless of the $TiO_2$ doping power due to the high transparency of the $TiO_2$. Although the annealed TITO showed much lower sheet resistance and resistivity relative to the as-deposited samples, the electrical properties of the annealed samples exhibited similar dependence on the $TiO_2$ power to the as-deposited samples. In addition, it was found that doping of an anatase $TiO_2$ in the ITO electrode prevented the preferred (222) orientation of the TITO electrodes. Although the TITO electrode showed higher sheet resistance and resistivity than that of the pure ITO electrode, it offers a very smooth surface and usage of a low-cost Ti element. It is thus considered a promising multicomponent transparent conducting electrode for cost-efficient flat panel displays and photovoltatics.

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • Kim, Do-Yeong;Lee, Jun-Sin;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF