• 제목/요약/키워드: Low costs

검색결과 1,347건 처리시간 0.027초

향상된 론웍 기반의 홈 네트워크용 전력선 모뎀 구현 (Implementation of a modem for home network power line communication based on improved LonWorks technology)

  • 마낙원;김녹원;김우섭;이창은;문경덕;김석기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.367-370
    • /
    • 2002
  • In this paper, we propose a new node architecture LonWorh control Network for home network system environmint using power line communications. Using conventional Lon Work technology is a many disputable points for home network. LonWork network system needs high-cost development equipment. Moreover, conventional Lon Work system can not implement high-grade algorithms and variety application operation. because of the limitation of processing ability in Neuron chip. For that reason, the proposed structure is applicable to low-cost and more complex applications which are impossible in home network using conventional Lonworks structure. The proposed structure is implemented with some hardware and かone software for power line home network. The physical layer and the MAC layer of the LonTalk protocol within ton Work are implemented in hardware, which decreases the development costs communication processor. The upper of link layer of the LonTalk protocol is implemented with software, which decreases the development costs of software and increases the flexibility of tile system and increases the extension of the system. We verified the commercial feasibility of the proposed system through the power line tests with the existing LonWorks network in home network. As a result, it is concluded that the proposed architecture provides increasing flexibility and decreasing cost of the system.

  • PDF

부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구 (A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost)

  • 이병하;김정훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권1호
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

수요자원 거래시장을 고려한 전기차 운영기준에 관한 연구 (Study on Operating Guidelines of Electric Vehicles considering Negawatt Market)

  • 양근모;김동민
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.67-71
    • /
    • 2015
  • The concept known as Vehicle-to-Grid (V2G) is to provide power to help balance loads by charging at night when demand is low and sending power to the grid when demand is high. Therefore, it is important to model the cost-benefit characteristics of Electric vehicle(EV)'s operation considering the negawatt market in real time. This paper proposes a methodology to formulate the various costs and economic benefits for sending the EV's power back to the grid, including a concept of inconvenience costs caused by operating the EV as a battery. This paper also introduces the general decision-making process based on the cost-benefit analysis in order to simulate the reasonable participation of V2G service. In the case study, it is confirmed by two-case simulations that the proposed approach is useful to help EV owners' decision-making. In the future, it is expected that the proposed methodology can be used as a decision-making guideline to help prepare the EV' power transmission.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

Development of optimum modeling approach in prediction of wheelflats effects on railway forces

  • Sadeghi, Javad;Khajehdezfuly, Amin;Esmaeili, Morteza;Poorveis, Davood
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.499-509
    • /
    • 2019
  • While the wheel flat is an asymmetrical phenomenon in the railway, majority of researches have used two-dimensional models in the investigation of the effect of wheel flat on the wheel rail forces. This is due to the considerably low computational costs of two dimensional (2D) models although their reliability is questionable. This leaves us with the question of "what is the optimum modeling technique?". It is addressed in this research. For this purpose, two and three dimensional numerical models of railway vehicle/track interaction were developed. The three dimensional (3D) model was validated by comparisons of its results with those obtained from a comprehensive field tests carried out in this research and then, the results obtained from the 2D and 3D models were compared. The results obtained indicate that there are considerable differences between wheel/rail forces obtained from the 2D and 3D models in the conditions of medium to large wheel-flats. On the other hand, it was shown that the results of the 2D models are reliable for particular ranges of vehicle speed, railway track stiffness and wheel-fats lengths and depths. The results were used to draw a diagram, which presents the optimum modeling technique, compromising between the costs and accuracy of the obtained results.

Numerical simulation of resistance performance according to surface roughness in container ships

  • Seok, Jun;Park, Jong-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.11-19
    • /
    • 2020
  • In recent years, oil prices have continued to be low owing to the development of unconventional resources such as shale gas, coalbed methane gas, and tight gas. However, shipping companies are still experiencing difficulties because of recession in the shipping market. Hence, they devote considerable effort toward reducing operating costs. One of the important parameters for reducing operating costs is the frictional resistance of vessels. Generally, a vessel is covered with paint for smoothing its surface. However, frictional resistance increases with time owing to surface roughness, such as that caused by fouling. To prevent this, shipping companies periodically clean or repaint the surfaces of vessels using analyzed operating data. In addition, studies using various methods have been continuously carried out to identify this phenomenon such as fouling for managing ships more efficiently. In this study, numerical simulation was used to analyze the change in the resistance performance of a ship owing to an increase in surface roughness using commercial software, i.e., Star-CCM+, which solves the continuity and Navier eStokes equations for incompressible and viscous flow. The conditions for numerical simulation were verified through comparison with experiments, and these conditions were applied to three ships to evaluate resistance performance according to surface roughness.

Mid-level Feature Extraction Method Based Transfer Learning to Small-Scale Dataset of Medical Images with Visualizing Analysis

  • Lee, Dong-Ho;Li, Yan;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1293-1308
    • /
    • 2020
  • In fine-tuning-based transfer learning, the size of the dataset may affect learning accuracy. When a dataset scale is small, fine-tuning-based transfer-learning methods use high computing costs, similar to a large-scale dataset. We propose a mid-level feature extractor that retrains only the mid-level convolutional layers, resulting in increased efficiency and reduced computing costs. This mid-level feature extractor is likely to provide an effective alternative in training a small-scale medical image dataset. The performance of the mid-level feature extractor is compared with the performance of low- and high-level feature extractors, as well as the fine-tuning method. First, the mid-level feature extractor takes a shorter time to converge than other methods do. Second, it shows good accuracy in validation loss evaluation. Third, it obtains an area under the ROC curve (AUC) of 0.87 in an untrained test dataset that is very different from the training dataset. Fourth, it extracts more clear feature maps about shape and part of the chest in the X-ray than fine-tuning method.

AN ASSESSMENT SYSTEM OF ECO-FRIENDLINESS OF CONSTRUCTED FACILITY IN THE DESIGN PHASE USING VALUE ENGINEERING

  • Byung-Soo, Kim;Dong-Eun, Lee;Suk-Hyun, Kwon;Min-Kwon, Choe
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1625-1629
    • /
    • 2009
  • The new paradigm called 'Low Carbon Green Growth' involved in reducing greenhouse gas is on the rise as a critical issue worldwide. The essential of Kyoto protocol issued in 1997 is to achieve the sustainable economic growth environments by converting existing production system to eco-friendly one. The protocol imposes the liability to reduce greenhouse gas to the countries joined to it. The paradigm is directly involved in the energy consumption and environmental pollution caused by construction activities. Value Engineering which are mainly applied in the design phase in practice is a measure to improve the value of a constructed facility by analyzing and/or appraising the functions and costs of it. However, an appropriate method which assesses eco-friendliness of constructed facility has not been propose by researchers. This paper proposes a method which assesses the performance involved in eco-friendliness of constructed facility using Value Engineering (VE) in the design phase. The method estimates the environmental cost relative to the amounts of energy consumption and environmental pollution occurred over the entire project life cycle. The database called "Life Cycle Inventory DB", which stores information about the amounts of environmental pollution, is used. The algorithm which retrieves the amounts of environmental pollutions from the DB and converts them into environmental costs is developed. The algorithm is implemented into a system which quantifies the eco-friendliness of constructed facility in the design phase using VE.

  • PDF

Design of Micro Water Supply System Using Solar Energy

  • Sharma, Ekisha;Khatiwada, Nawa Raj;Ghimire, Anish
    • 적정기술학회지
    • /
    • 제5권1호
    • /
    • pp.8-17
    • /
    • 2019
  • Solar pumps, for water lift systems, is becoming popular in rural areas for supplying drinking water in dry seasons when its need is elevated. The development in technology has also made solar pumps readily available and cheap which has increased its demands. So, for scattered settlements having a limited budget for operation and maintenance costs, solar pump is preferred over grid connected electrical pumping systems. This primary objective of the study was to design a solar photovoltaic pumping drinking water supply system for a small health post which is about 45 km east from Kathmandu, the capital city of Nepal. The study also compared and verified the final design with the system's existing design prepared by a development agency. The water source for this study was a confined aquifer 115m below the surface. The water demand was calculated to be 11m3 per day. A 1500 kPa submersible pump attached to a motor was selected and installed. Along with that twelve solar panels, reservoir, transmission main and distribution main was designed. The outcomes conclude solar photovoltaic pumping water supply systems to be cost-effective with an estimated cost of only USD 0.84 million per MLD. Solar pumps require low maintenance and operation costs and its repairs can quickly be done by the local people. The study also shows that solar technology produces no sound, needs no fuel making it environmentally friendly.

건강신념 모델을 적용한 고혈압 영양교육 프로그램 개발 -포커스그룹 인터뷰에 기초하여- (Development of Nutrition Education Program for Hypertension Based on Health Belief Model, Applying Focus Group Interview)

  • 박서연;권종숙;김초일;이윤나;김혜경
    • 대한지역사회영양학회지
    • /
    • 제17권5호
    • /
    • pp.623-636
    • /
    • 2012
  • Health Belief Model is a socio-psychological theory of decision making to individual health-related behaviors. This study was aimed to develop an effective education program for hypertension based on health belief model. The main factors of health belief model were investigated by focus group interview (FGI) with 23 hypertensive or prehypertensive subjects aged over fifty years. 'Perceived susceptibility' to hypertension was family history, neglect of health care, preference for salty food, broth of soup and stew. Lifelong medication, complications, and medical costs were reported as 'perceived severity' of hypertension. 'Perceived benefits' of hypertension management were decrease of medicinal dose, reduction of medical costs, and healthy eating habits of the family, while 'perceived barriers' were lack of palatability of low salt diet, convenience-oriented dietary habits, and limited choice of foods when eating out. Subjects mentioned TV health programs, public health center programs, and advice from doctors and family as 'cues to action' of hypertension management. These qualitative information provided basis for developing a nutrition education program for hypertension which could be implemented in the public health center. Eight week program was composed of understanding hypertension, risk factor management (eating habits, weight), low salt diet (principles, cooking), advanced management for healthy diet in 2 sessions, and summary. Each session was designed to alert the susceptibility and severity, to emphasize the benefits, and to reduce the barriers by providing dietary monitoring, practical advice, and action tips.