• Title/Summary/Keyword: Low copper loss

Search Result 53, Processing Time 0.027 seconds

Assessment of Pollution Characteristics of Surface Sediments from Andong Lake(I): Studies on Characteristics of Pollution of Sediments from Andong Dam (안동댐 퇴적물의 오염도 평가(I): 안동댐 퇴적물의 오염 특성 연구)

  • Kim, Young Hun;Park, Jae Chung;Shin, Tae Cheon;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.377-389
    • /
    • 2020
  • In this study, pollution characteristics were investigated for the Andong Dam sediments in the Nakdong River. Sediment samples were collected from the middle, left, and right points of the lake up to 40km upstream of the Andong Dam at intervals of about 5km by stratification and turnover period. In the case of nutrients and total organics such as loss of ignition, total nitrogen, and phosphorus, the degree of contamination is low, but heavy metals of arsenic and cadmium is very high. The contamination level of sediments in the dam area is higher than that of the branch of river and the control group, and concentration of chromium, copper, and lead are higher in the stratification period, and that of zinc is higher in turnover period. Arsenic, cadmium, manganese, and zinc showed contamination variation between upstream and downstream but chromium, copper, mercury, iron and lead didn't show the variation.

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.

Microwave Dielectric Properties of Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ Ceramics with Addition of Zn-B-O Glass Systems (Zn-B-O 글라스 첨가에 의한 Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ 세라믹스의 마이크로파 유전특성)

  • In, Chi-Seung;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.781-785
    • /
    • 2016
  • With trend of the miniaturization and the high-functionalizing of mobile communication system, low-loss microwave dielectric materials are widely used for high frequency communication components. These dielectric materials should be co-sintered with highly electric-conducting metal such as silver or copper for high-frequency and thick film process application. Sintering temperature of $Ca(Li_{1/3}Nd_{2/3})_{0.2}Ti_{0.8}]O_{3-{\delta}}$, which has excellent dielectric properties such as ${\varepsilon}_r$ above 40, quality factor ($Q{\cdot}f_0$) above 16,000 GHz, and TCF (temperature coefficient of resonant frequency) of $-20{\sim}-10ppm/^{\circ}C$, is reported as high as $1,175^{\circ}C$, so it could not be co-sintered with silver or copper. Therefore in this study, low-temperature melting glasses of Zn-B-O and Zn-B-Si-O systems were added to $Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-{\delta}}$ to lower its sintering temperature under $900^{\circ}C$ without losing excellency of dielectric properties. With 15 weight % of Zn-B-Si-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.11g/cm^3$, ${\varepsilon}_r$ of 40.1, $Q{\cdot}f_0$ of 4,869 GHz, and TCF of $-5.9ppm/^{\circ}C$. With 15 weight % of Zn-B-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.14g/cm^3$, ${\varepsilon}_r$ of 40.4, $Q{\cdot}f_0$ of 7,059 GHz, and TCF of $-0.92ppm/^{\circ}C$.

A Study on the Design and Implementation of the Oscillator Using a Miniaturized Hairpin Ring Resonator (소형화된 헤어핀 링 공진기를 이용한 발진기 설계 및 제작에 관한 연구)

  • Kim, Jang-Gu;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • In this paper, an S-band oscillator of the low phase noise property using miniaturized microstrip hairpin shaped ring resonator has been designed and implemented. The TACONIC's RF-35 substrate has a dielectric constant ${\varepsilon}_r$=3.5 a thickness h=20mil a copper thickness t=17 um and loss tangent $tan{\delta}$=0.0025. The designed and implemented 2.45 GHz oscillator shows low phase performance of -100.5 dBc/Hz a 100kHz offset. Output power 20.9 dBm at center frequency 2.45 GHz and harmonic suppression -32 dBc. The circuit was implemented with hybrid technique. But can be fully compatible with the RFIC's, MIC and MMIC due to its entirely planar structure.

  • PDF

Investigation of the Ni/Cu metal grid space for high-effiency, low cost crystlline silicon solar cells (고효율, 저가화 태양전지에 적합한 Ni/Cu 금속 전극 간격에 따른 특성 평가)

  • Kim, Min-Jeong;Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.225-229
    • /
    • 2009
  • The front metal contact is one of the most important element influences in efficiency in the silicon solar cell. First of all selective of the material and formation method is important in metal contacts. Commercial solar cells with screen-printed contacts formed by using Ag paste process is simple relatively and mass production is easy. But it suffer from a low fill factor and a high shading loss because of high contact resistance. Besides Ag paste too expensive. because of depends income. This paper applied for Ni/Cu metallization replace for paste of screen printing front metal contact. Low cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the screen-printed Ag contacts. Ni has been proposed as a suitable silicide for the salicidation process and is expected to replace conventional silicides. Copper is a promising material for the electrical contacts in solar cells in terms of conductivity and cost. In experiments Ni/Cu metal contact applied same grid formation of screen-printed solar cell. And it has variation of different grid spacing. It was verified that the wide spacing of grid finger could increase the series resistance also the narrow spacing of grid finger also implies a grid with a higher density of grid fingers. Through different grid spacing found alteration of efficiency.

  • PDF

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

The Analysis of The Transport Current Property Depend on The Fault Angle of BSCCO HTS Cable (초전도 케이블용 BSCCO의 사고각에 따른 통전특성 분석)

  • Lee, Dong-Hyeok;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.367-368
    • /
    • 2009
  • BSCCO HTS(High Temperature Superconductor) could be applied to superconducting cable, magnet and motor, using its hight critical properties. Especially, superconducting cable has a hight possibility of practical use due to the possibility of low voltage and high capacity transmission caused by its lower power loss than copper cable. In this paper, the transport characteristics of BSCCO superconducting cable, according to the change of BSCCO superconducting cable's accident point at phase $0^{\circ}$ and $45^{\circ}C$, were analyzed and compared each other. Consequently, when the accident was occur the resistance of the HTS was higher at the point phase $0^{\circ}$ than $45^{\circ}$ which means it will cause much higher load on the HTS.

  • PDF

Characteristics Analysis of V Shape Pole Changing Memory Motor using Finite Element Method (유한요소법을 이용한 V형상 극변환 메모리 모터의 특성 분석)

  • Kim, Young-Hyun;Kim, Su-Yong;Kim, Jung-Woo;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.872-877
    • /
    • 2015
  • The Permanent Magnet (PM) machine used at speed control using field-weakening control method. But the field-weakening current, which reduces the field flux for high speeds, causes significant copper and core losses. Therefore, this paper deals with the PM performance evaluations in a pole changing memory motor (PCMM). The PCMM can change the number of magnetic poles and produce two types of torque. When the motor operates with eight poles, it produces a magnetic torque at low rotational speeds. When the motor changes to four poles, it produces both magnetic torque and reluctance torque at high speeds. The paper explain the principle and basic characteristics of the motor by using a finite element method magnetic-field analysis, which consists of a PM magnetized by a pulse d-axis current of the armature winding. The results of our experiment show that the proposed motor reduces core loss by 10% and 55% under no-load and load conditions, and doubles the speed range of the motor.

Development of High-Performance Ultra-small Size RF Chip Inductors (고성능의 초소형 RF 칩 인덕터 개발)

  • 윤의중;천채일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.340-347
    • /
    • 2004
  • Ultra-small size, high-performance, solenoid-type RF chip inductors utilizing low-loss A1$_2$O$_3$ core materials were investigated. The dimensions of the RF chip inductors fabricated were 1.0mm${\times}$0.5mm${\times}$0.5mm and copper coils were used. The materials (96% A1$_2$O$_3$) and shape (I-type) of the core, the diameters (40${\mu}{\textrm}{m}$) and position (middle) of the coil, and the lengths (0.35mm) of solenoid were determined by a high-frequency structure simulator (HFSS) to maximize the performance of the inductors. The high-frequency characteristics of the inductance (L) and quality-factor (Q) of the developed inductors were measured using a RF impedance/material analyzer (E4991A with E16197A test fixture). The developed inductors exhibit an inductance of 11 to 11.3nH and a qualify factor of 22.3 to 65.7 over the frequency ranges of 250 MHz to 1.7 GHz, and show results comparable to those measured for the inductors prepared by Coilcraft$^{TM}$. The simulated data described the high-frequency data of the L and Q of the fabricated inductors well.

Development of Cone-Shaped Electrode for Promontory Stimulation Electrically Auditory Brainstem Response (와우 갑각 전기자극 뇌간유발반응용 원추형 전극의 개발)

  • Heo, Seung-Deok;Jung, Dong-Keun;Kang, Myung-Koo;Kim, Lee-Suk;Ko, Do-Heung
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2003
  • This paper introduces a new zinc coated copper wire electrode with coiled cone shape which has low surface resistance and tolerance to the motion artifact for promontory stimulation electrically auditory brainstem responses (PSEABR). Auditory brainstem responses (ABR) can be used to predict hearing threshold level with a great deal of accuracy particularly for a young child who cannot cooperate mechanically and some hearing impaired who are exaggerating a hearing loss for economic compensation. While severe profound sensorineural hearing losses may not be implemented by auditory potentials, PSEABR is proven as a useful tool even for some sensorineural related hearing impaired. It was shown that PSEABR gives the electrical stimuli to promontory of the cochlear instead of giving acoustic stimuli. For this reason, PSEABR can be used as an alternative for cochlear implantation, and can also be used as an optimal device selection and neural information for MAP. It was found that the role of electrode is very important in PSEABR. Even though this cone-shaped electrode was applied in animal experiments, waveforms are well produced by PSEABR. Thus, it was concluded that cone-shaped electrode turned out to be a useful preoperative audiological evaluation tool in deciding time for cochlear implantation surgery.

  • PDF