• Title/Summary/Keyword: Low carbon steel

Search Result 541, Processing Time 0.024 seconds

Nozzle Clogging Mechanism in Continuous Casting for Titanium-Containing Steel (티타늄 첨가강의 연주 노즐막힘 기구)

  • Jung, Woo-Gwang;Kwon, Oh-Duck;Cho, Mun-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.473-480
    • /
    • 2009
  • In order to provide the mechanism of nozzle clogging, recovered nozzles for high strength steel grade were examined carefully after continuous casting. The thickness of clogged material in SEN is increased in the following order: from the bottom to the top of the nozzle, upper part of slag line, and the pouring hole. Nozzle clogging material begins to form due the adhesion of metal to nozzle wall, the decarburization, and reduction of oxide in the refractory by Al and Ti in the melt. The reduction of oxide in the refractory by Al and Ti improves the wettability of the melt on the refractory and forms a thin Al-Ti-O layer. Metal containing micro alumina inclusions is solidified on the Al-Ti-O layer, and the solid layer grows due to the heat evolution through the nozzle wall. Thermodynamic calculation has been made for the related reactions. The effect of superheat to the nozzle clogging is discussed on ultra low carbon steel and low carbon steel.

A Study on the Recovery of Zn from Electric Arc Furnace Dust by Carbon Reduction

  • Joo, Sung-Min;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Kyung-Hoon;Sung, Ghee-Woong;Kim, Jang-Su;Lee, Park-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.398-403
    • /
    • 2001
  • There is a potential usability of electric arc furnace(EAF) dust produced during the iron manufacturing process as a recycled resource, because valuable materials such as Zn, Pb and Fe are contained in it. In this study, metallic Zn was recycled from the fine electric arc furnace dust by a solid state reduction method using carbon at relatively low temperature. It was possible to recover metallic zinc by using of high vapour pressure of zinc with this reduction method. The feasibility of recycled zinc for cold bonded pellet(CBP) was investigated. The main composition of EAF dust were franklinite(ZnFe$_2$O$_4$), magnetite(Fe$_3$O$_4$) and zincite(ZnO), and Pb and Cl were completely removed by a heat treatment in oxidation environment. The reduction ratio increased as the solid carbon content increased, and it increased with decreasing of dust particle size and increasing of compaction pressure due to a increase of contact area.

  • PDF

A Study on the Formation Mechanism of Discontinuities in $CO_2$ Laser Fusion Zone of Fe-Co-Ni Sintered Segment and Carbon Steel (Pe-Co-Ni 분말 소결 금속과 탄소강의 이종재료간 레이저 용접부의 결함형성기구 연구)

  • 신민효;김태웅;박희동;이창희
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • In this study, the formation mechanism of discontinuities in the laser fusion zone of diamond saw blade was investigated. $CO_2$ laser weldings were conducted along the butt between Fe base sintered tip and carbon steel shank with sets of variable welding parameters. The effect of heat input on irregular humps, outer cavity, inner cavity and bond strengh was evaluated. The optimum heat input to have a proper humps was in the range of 10.4~$17.6kJm_{-1}$. With increasing heat input, both outer and inner cavities were reduced. The outer cavity was caused by insufficient refill of keyhole, while inner cavity was caused by trapping of bubble in molten metal. The bubble came from sintered tip and intensive vaporization at bottom tip of the keyhole. A gas formation and low melting point element vaporization were not occurred during welding. We could not find any relationship between bond strength and amount of discontinuities. Because the fracture were occurred in not only sintered tip but also carbon steel shank due to hardness distributions.

Effects of Si Content and Austempering Conditions on Properties of High Carbon Cast Steel (고탄소강의 특성에 미치는 규소 함량 및 오스템퍼링 조건의 영향)

  • Kim, Won-Bae;Kim, Myung-Sik;Kim, Jong-Chul;Sohn, Ho-Sang;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • This study has been carried out to investigate the microstructure of austempered high carbon cast steel with the variation of silicon and heat treatment conditions. The results show that an lower ausferritic structure is formed at the low austemepring temperature ($250{\sim}300^{\circ}C$) and an upper ausferritic structure is formed at the high austemepring temperature ($350{\sim}400^{\circ}C$). As an austempering temperature increased, the retained austenite volume fraction increased, however hardness decreased. Also, as a silicon content increased, the precipitation of cementite was suppressed, therefore 2nd reaction of autempering transformation was delayed.

Effects of Microstructural Parameters on the Reduction of Area in Hyper-eutectoid Steel Wires (과공석 강선에서 미세조직 인자들이 단면감소율에 미치는 영향)

  • An, K.S.;Park, J.H.;Bae, H.J.;Nam, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.306-312
    • /
    • 2016
  • Effects of manufacturing conditions, such as austenitizing temperature, patenting temperature and carbon content in steels, on mechanical properties, especially on reduction of area (RA), of hyper-eutectoid steel wires were investigated. RA increased and then decreased with transformation temperature. This was attributed to the presence of abnormal structures in steels transformed at low transformation temperatures and the occurrence of shear cracking during tensile testing of steels transformed at high transformation temperatures. The increase of austenitizing temperature resulted in the increased austenite grain size and consequently the decrease of RA. The decrease of RA with increasing the carbon content in steels was attributed to the increased fraction of cleavage fracture in tensile fractured surfaces.

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Fabrication of Ultrafine Grained Structure Materials by Equal Channel Angular Pressing (ECAP 강소성 가공에 의한 구조재료 초미세립화)

  • Kim W. G.;Ahn Y. J.;Shin D. H.;Park K. T.;Ko Y. G.;Lee J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.126-129
    • /
    • 2005
  • Microstructures and tensile properties of low carbon steels, 5083 Al alloy and Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) were examined in order to understand their deformation response associated with a formation of an ultrafine grained (UFG) structure. Room temperature tensile properties of UFG low carbon ferrite/pearlite steels and UFG ferrite/martensite dual phase steel were compared for exploring a feasibility enhancing the strain hardening capability of UFG materials. In addition, low temperature and high strain rate superplasticity of the two grades of the UFG 5083 Al alloy, and Ti-6Al-4V alloy were presented. From the analysis of a series of experiments, it was found that UFG materials exhibited the enhanced mechanical properties compared to coarse grained counterparts.

  • PDF

Behavior of Initial Formation of Iron Nitride on Carbon Steel at Low Pressure Gas Nitriding (저압가스질화에서 탄소강의 초기 화합물층 형성 거동)

  • Kim, Yoon-Kee;Kim, Sang-Gweon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Growth behaviors of iron-nitride on S45C steels at low pressure gas nitriding were examined. Surfaces of the steels covered with fine and porous oxide during the pre-oxidation using $N_2O$ gas. Well faceted particles connected with them were observed after 1 min nitriding. They grew steadily and filled inter-pores during additional nitriding process. From the X-ray diffraction analysis, ${\gamma}'$-iron nitride was dominantly formed at the initial stage but the amount of ${\varepsilon}$-iron nitride was rapidly increased as nitriding treatment time. The porous layer was formed on the particles and thickened up to half of nitride layer after 60 min nitriding. The observed growth behaviors were discussed in internal stress related with volume expansion involved in transforming from iron to iron-nitrides.