• Title/Summary/Keyword: Low beam

Search Result 1,857, Processing Time 0.026 seconds

A study on the electrom beam weldability of 9%Ni steel (II) - Effect of $a_b$ parameter on bead shape - (9%Ni 강의 전자빔 용접성에 관한 연구 II -비이드형상에 미치는$a_b$parameter의 영향)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 1997
  • Welding defects, such as porosity and spike, have sometimes occurred in deep penetration electron beam welds. These defects are known to be one of the serious problem in electron beam welds. So, effects of active parameters ($a_b$) on bead shape and occurrence of defects in electron beam welds of heavy section 9%Ni steel plates were investigated. Partial penetration welding in flat position, and deep penetration welding of 10 ~ 28mm depth were investigated in this study. It is desirable to select low accelerating voltage and above the surface focus position $a_b$$\geq$1.2 at which a wine-cup shaped bead is obtained to avoid the welding defects such as spike and root porosity. When the accelerating voltage of electron beam was low (90kV), active parameter ($a_b$) did not influence on the bead width, penetration depth and weld defects significantly. However, in case of high voltage ($\geq$120kV), active parameter ($a_b$) was sensitively associated with penetraton depth and weld defects, i.e. when the active parameter (($a_b$) was in the range of 0.6 to 1.0, the depth of penetration was always over the target (23mm), while the depth of penetration was dramatically decreased with further increase of active parameter ($a_b$). The weld defects were decreased with the increase of active parameter $a_b$ resulting in the decrease of energy density of the focused beam in the root part of fusion zone.

  • PDF

A Single-Fed Microstrip Parasitic Array Antenna for Low-Cost Three-Dimensional Beam Steering (저가 3차원 빔 조향을 위한 단일급전 마이크로스트립 기생배열 안테나)

  • Kim, Young-Goo;Kim, Tae-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.223-230
    • /
    • 2014
  • In this paper, the single-fed microstrip parasitic array antenna for low-cost three-dimensional beam steering in 5.8GHz ISM(5.725GHz~5.825GHz) band is designed and implemented. The antenna is comprised of one feed active element and four passive elements with variable reactance loads. The beam steering range of implemented antenna is achieved three-dimensional beam steering of ${\pm}28^{\circ}$ at azimuth angle ${\Phi}=0^{\circ}$, ${\Phi}=45^{\circ}$, ${\Phi}=90^{\circ}$, and ${\Phi}=135^{\circ}$ by adjusting variable reactance loads. The maximum gain of the antenna in the beam steering range have within 7.23dBi~9.36dBi and the bandwidth of return loss lower than -10dB covers 5.8GHz ISM band regardless of the beam steering angles.

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading

  • Chien, Li-Kai;Kuo, Yi-Hao;Huang, Chung-Ho;Chen, How-Ji;Cheng, Ping-Hu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.559-572
    • /
    • 2014
  • This paper presents the results of an experimental investigation on the flexural behavior of doubly reinforced lightweight concrete (R.L.C.) beams tested under cyclic loading. A total of 20 beam specimens were tested. Test results are presented in terms of ductility index, the degradation of strength and stiffness, and energy dissipation. The flexural properties of R.L.C. beam were compared to those of normal concrete (R.C.) beams. Test results show that R.L.C. beam with low and medium concrete strength (20, 40MPa) performed displacement ductility similar to the R.C. beam. The ductility can be improved by enhancing the concrete strength or decreasing the tension reinforcement ratio. Using lightweight aggregate in concrete is advantageous to the dynamic stiffness of R.L.C. beam. Enhancement of concrete strength and increase of reinforcement ratio will lead to increase of the stiffness degradation of beam. The energy dissipation of R.L.C beam, similar to R.C. beam, increase with the increase of tension reinforcement ratio. The energy dissipation of unit load cycle for smaller tension reinforcement ratio is relatively less than that of beam with higher reinforcement ratio.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

Bending performance and calculation of reinforced beam with hybrid fiber and CaCO3 whisker

  • Li Li;Yapeng Qin;Mingli Cao;Junfeng Guan;Chaopeng Xie
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • In this paper, the bending performance of a MSFRHPC (containing steel fiber, polyvinyl alcohol (PVA) fiber, and CW)-reinforced beam was studied for the first time. Introducing a multiscale fiber system increased the first crack load (up to 150%), yield load (up to 50%), and peak load (up to 15%) of reinforced beams. The multiscale fiber system delays cracking of the reinforced beam, reduces crack width of the reinforced beam in normal use, and improves the durability of the beam. Considering yield load and peak load, the reinforcing effect of multiscale fiber on the high-reinforcement ratio beam (1.00%) is better than that on the low-reinforcement ratio beam (0.57%). Introducing fibers slowed the development of cracks in the reinforced beam under bending. With the added hybrid fiber, the deformation concentration of reinforced beams after yield was more significant with concentration in 1 or 2 cracks. A model for predicting the flexural capacity of MSFRHPC-reinforced beams was proposed, considering the action of multiscale hybrid fibers. This research is helpful for structure application of MSFRHPC-containing CW.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

Study of SiO2 Thin Film Patterning by Low Energy Electron Beam Lithography Using Microcolumns (저 에너지 초소형 전자칼럼 리소그래피를 이용한 SiO2 박막의 Pattern 제작에 관한 연구)

  • Yoshimoto, T.;Kim, H.S.;Kim, D.W.;Ahn, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.178-181
    • /
    • 2007
  • Electron beam lithography has been studied as a next-generation lithography technology instead of photo lithography for ULSI semiconductor devices. In this work, we have made a low-energy electron beam lithography system based on the microcolumn and investigated the dependence of the pattern thickness on the energies and dose concentration of the electron beam. We have also demonstrated the potential of low-energy lithography by achieving 100 nm-$SiO_2$ thin film patterning.

The Effect of Electron Beam Irradiation on the Electrical Conductivity Characteristics in Low Density Polyethylene Film (전자선 조사가 저밀도 폴리에틸렌 필름의 전기 전도도특성에 미치는 영향)

  • 이종필;이수원;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 1999
  • In this paper, physical properties and electrical conductivity of electron beam irradiated low density polyethylene are studied. The specimens of thickness 100 $\mu\textrm{m}$ irradiated as each 1 Mrad, 2 Mrad, 4 Mrad, 8 Mrad, 16 Mrad and virgin are used in this experiment. FTIR analysis shows strong absorptions by methyl groups in wavenumbers 720 $cm^{-1}$ and 1463 $cm^{-1}$, and did not show any evidences of the presence of residual carbonyl groups. From the DSC analysis, the crystalline melting point of electron beam irradiated specimen is lower than that of virgin specimen. 1 Mrad irradiated sample shows the stable electrical conductivity characteristics with both temperature and electric field.

  • PDF