• Title/Summary/Keyword: Low Vibration

Search Result 2,186, Processing Time 0.026 seconds

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

Temperature Dependence of the Vibration-Vibration Energy Transfer for HF(v = n) + $H_2$(v = 0) and DF(v = n) + $D_2$(v = 0)

  • Lee, Chang-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 1992
  • Vibration-to-vibration energy transfer probabilities for $HF(v=n)+H_2(v=0){\to}HF(v=n-1)+H_2(v=1)$ and $DF(v=n)+D_2(v=0){\to}DF(v=n-1)+D_2(v=1)$ including both the vibration-to-vibration and translation (V-V, T) and vibration-to-vibration and rotation (V-V, R) energy transfer paths have been calculated semiclassically using a simplified collision model and Morse-type intermolecular interaction potential. The calculated results are in reasonably good agreement with those obtained by experimental studies. They also show that the transition processes for $HF(v=1-3)+H_2(v=0){\to}HF(v=0-2)+H_2(v=1)$ and $DF(v=1,\;4)+D_2(v=0){\to}DF(v=0,\;3)+D_2(v=1)$ are strongly dependent on the V-V, T path at low temperature but occur predominantly via the V-V, R path with rising temperature. The vibration-to-vibration energy transfer for $HF(v=4)+H_2(v=0){\to}HF(v=3)+H_2(v=1)$ and $DF(v=2-3)+D_2(v=0){\to}DF(v=1-2)+D_2(v=1)$ occur predominantly via V-V, R path and V-V, T path through whole temperatures, respectively.

A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Diesel Engines with Tuning Damper (튜닝댐퍼를 갖는 초대형 저속 2행정 디젤엔진의 비틀림진동 특성에 관한 연구)

  • Lee, Don-Chool;Barro, Ronald D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-75
    • /
    • 2009
  • The shipbuilder's requirement for a higher power output rating has led to the development of a super large two stroke low speed diesel engines. Usually a large-sized bore engine ranging from $8{\sim}14$ cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating(mcr). Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This plays a vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanisms unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.

A Study on the Tunnel Blasting Technique with a Combined Application of Electronic Detonators and Low Vibration Explosives in a Close Proximity to a Safety things (전자뇌관과 미진동폭약을 활용한 보안물건 초근접 구간에서의 터널발파공법 적용에 관한 연구)

  • Oh, Sei young;Lee, Chun sik;Lee, Ki keun;Lee, Dong hee;Lee, Seung jae;Park, Jong ho
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.36-47
    • /
    • 2017
  • Due to civil complaints on vibrations and noises arising from blasting, mechanical excavation has been widely used for tunneling rather than the method of blasting, especially in the case of being in a close-proximity of 10M-20M range to a safety-thing. However, mechanical excavation, though less, it does increase the cost of whole construction project as the period of excavation is much prolonged from lack of constructability. This study aims to research and develop an effective blasting method that can ensure the constructability of shortened excavation period whilst not compromising the safety of the safety-things in a proximity to the blasting site by using a combination of an electronic detonator that can accurately control its delay period and a Low Vibration Explosives(LoVEX) that is effective on vibration control.

Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control (공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구)

  • Shin, Yun-Ho;Oh, Ki-Yong;Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.72-79
    • /
    • 2007
  • As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the tine delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.

Effect of Whole Body Horizontal Vibration Exercise in Chronic Low Back Pain Patients: Vertical Versus Horizontal Vibration Exercise

  • Kim, Heejae;Kwon, Bum Sun;Park, Jin-Woo;Lee, Hojun;Nam, Kiyeun;Park, Taejune;Cho, Yongjin;Kim, Taeyeon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.804-813
    • /
    • 2018
  • Objective To elucidate the effect of a 12-week horizontal vibration exercise (HVE) in chronic low back pain (CLBP) patients as compared to vertical vibration exercise (VVE). Methods Twenty-eight CLBP patients were randomly assigned to either the HVE or VVE group. All participants performed the exercise for 30 minutes each day, three times a week, for a total of 12 weeks. Altered pain and functional ability were evaluated using the visual analog scale (VAS) and Oswestry Disability Index (ODI), respectively. Changes in lumbar muscle strength, transverse abdominis (TrA) and multifidus muscle thicknesses, and standing balance were measured using an isokinetic dynamometer, ultrasonography, and balance parameters, respectively. These assessments were evaluated prior to treatment, 6 weeks and 12 weeks after the first treatment, and 4 weeks after the end of treatment (that is, 16 weeks after the first treatment). Results According to the repeated-measures analysis of variance, there were significant improvements with time on VAS, ODI, standing balance score, lumbar flexor, and extensor muscle strength (all p<0.001 in both groups) without any significant changes in TrA (p=0.153 in HVE, p=0.561 in VVE group) or multifidus (p=0.737 in HVE, p=0.380 in VVE group) muscle thickness. Further, there were no significant differences between groups according to time in any of the assessments. No adverse events were noticed during treatment in either group. Conclusion HVE is as effective as VVE in reducing pain, strengthening the lumbar muscle, and improving the balance and functional abilities of CLBP patients. Vibrational exercise increases muscle strength without inducing muscle hypertrophy.

A passive vibration isolator with bio-inspired structure and inerter nonlinear effects

  • Jing Bian;Xu-hong Zhou;Ke Ke;Michael CH Yam;Yu-hang Wang;Yue Qiu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.221-238
    • /
    • 2023
  • This paper developed and examined a novel passive vibration isolator (i.e., "X-inerter") motivated by combining a bio-inspired structure and a rack-pinion inerter. The bio-inspired structure provided nonlinear stiffness and damping owing to its geometric nonlinearity. In addition, the behavior was further enhanced by a gear inerter that produced a special nonlinear inertia effect; thus, an X-inerter was developed. As a result, the X-inerter can achieve both high-static-low-dynamic stiffness (HSLDS) and quasi-zero stiffness (QZS), obtaining ultra-low frequency isolation. Furthermore, the installed inerter can produce a coupled nonlinear inertia and damping effect, leading to an anti-resonance frequency near the resonance, wide isolation region, and low resonance peak. Both static and dynamic analyses of the proposed isolator were conducted and the structural parameters' influence was comprehensively investigated. The X-inerter was proven to be comparatively more stable in the ultra-low frequency than the benchmarking QZS isolator due to the nonlinear damping and inertia properties. Moreover, the inertia effect could suppress the bio-inspired structure's super- and sub-harmonic resonance. Therefore, the X-inerter isolator generally possesses desirable nonlinear stiffness, nonlinear damping, and unique nonlinear inertia, designed to achieve the ultra-low natural frequency, the anti-resonance property, and a wide isolation region with a low resonance peak.

DEVELOPMENT OF A VIBRATION MODEL OF A HELICAL GEAR PAIR FOR VEHICLE TRANSMISSION

  • Ko, W.S.;Lee, H.W.;Park, N.G.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.477-483
    • /
    • 2006
  • A vibration model of a helical gear pair for vehicle transmission is developed by considering the elastic deformation of the active teeth and the body to be a rigid. The main source of vibration in a helical gear system which caused by the mass unbalances of rotors and the transmission errors of gearings in mathematically formulated and applied to the analysis of vibration characteristics of geared systems. As an example, a simple geared system containing a helical gearing is considered. The critical speeds are found by the Campbell diagram and compared with the experimental results We expect this developed program to contribute to the reduction of the vibration and noise on vehicle a transmission in the field of both design and manufacturing. In addition, this program can be used as a basic program for CAD/CAM of low-noised gear teeth.

Study on vibration characteristics of low pressure turbine hood resonance in a 500MW thermal power plant (500MW 화력발전소 저압터빈 Hood 공진 특성에 관한 연구)

  • Cho, Cheul-Whan;Cho, Seong-Tae;Koo, Jae-Raeyang;Kim, Hyoung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.23-27
    • /
    • 2013
  • In this research paper, we study on how to decrease the high vibration of turbine hood casings which are main facilities of power generation industry. Cause of Standard coal-fired power 500MW facilities turbine hoods' high vibration is that Natural frequency of hood casing designed in near domain frequency, when they are making hoods. We investigate to reduce high vibration at hood casing. We use FEM method to found how to avoid resonance, and test to confirm that our FEM result. We Finally attach minium mass plate at hood casing to avoid resonance and high vibration reduce lower $100{\mu}m$.

Vibration Suppression of a Cantilever Beam Using MTMD (MTMD를 이용한 보의 진동 억제)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Jong-Hyuk;Lim, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1091-1097
    • /
    • 2011
  • In the present study, TMD(tuned mass damper) with eddy current damping is proposed to suppress the vibration of a cantilever beam effectively. The advantages of TMD are that it is simple and its performance are excellent at any particular frequency. However, TMD may have the low performance at other frequency. To solve this problem and improve its performance, this study applies the eddy current damping to TMD. This TMD with ECD is named as MTMD(magnetically tuned mass damper). MTMD is designed for the vibration suppression of a cantilever beam. The mathematical modeling, simulation, and experiments of the cantilever beam with MTMD are performed. From analytic and experimental results, it can be concluded that the vibration suppression performance of MTMD are excellent.