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ABSTRACT-A vibration model of a helical gear pair for vehicle transmission is developed by considering the elastic
deformation of the active teeth and the body to be a rigid. The main source of vibration in a helical gear system which
caused by the mass unbalances of rotors and the transmission errors of gearings is mathematically formulated and applied
to the analysis of vibration characteristics of geared systems. As an example, a simple geared system containing a helical
gearing is considered. The critical speeds are found by the Campbell diagram and compared with the experimental results.
We expect this developed program to contribute to the reduction of the vibration and noise on vehicle a transmission in
the field of both design and manufacturing. In addition, this program can be used as a basic program for CAD/CAM of

low-noised gear teeth,
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1. INTRODUCTION

Recent consumers' propensities for vehicles are intended
for both eminent performance and high quality. This
includes agreeable driving, comfort and safety, power
performance, stability of the steering system and fuel
economy. The transmission, a main part of the vehicles,
is developed to satisfy the more strict requirements of
high capacity, high endurance, compact size and lowered
vibration/noise. The vehicle transmission has a very
complex helical gear system and the vibration and noise
problems of these systems according to the requirement
of high speed, high precision and high power are increas-
ing now (Bierman, 2005). The helical gear system has the
merits of noise reduction but has complicated flexible
characteristics compared with a spur gear system. Six
degrees of freedom should be considered - three
translational motions and three rotational motions - to
analyze the helical gear system excited by bending,
torsional and axial force.

In the study of the analysis of helical gear system
(Umezawa et al., 1986, 1988) calculated the rotational
motion of a helical gear pair with small face width by the
numerical method to reduce the transmission error.
Neriya et al. (1988; 1989) calculated the response of a
helical gear pair which is flexed with bending, torsional
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and axial forces and excited with the static transmission
error and achieved a stable region by Floquet theory.
Also, Lee er al. (1998) formulated the vane passing
frequencies of the impeller in’ the air type turbo-
compressor by the perturbation method which was
excited with the mass unbalance of rotors, the misalign-
ment of shafts, the transmission error of the gear pairs,
the backlash and bearing clearance, and the periodic
variation of gear contact coefficients.

In this paper, we developed the generalized vibrational
model of the helical gear pair under the bending moment,
the torsion and the axial force of the shaft. This helical
gear system model enables to understand the complicated
helical gear systern which drives the vehicle transmi-
ssion, turbo compressor, gas turbine or driveline of the
craft. The single step helical gear system was manu-
factured to verify the vibrational model. The critical
speed was calculated by analytic method and measured in
test with recognizing of the sources of the vibration such
as the unbalance of the rotating rotor, the gear
transmission error, the misalignment of the shaft, the gear
backlash, the clearance of bearing and the alternation of
the exciting frequency which is caused by periodical
changes of the stiffness coefficient on the contact of the
gear teeth. Lastly, the critical speeds are found by the
Campbell diagram and compared with the experimental
results.
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2. MATHEMATICAL MODEL OF A SIMPLE
HELICAL GEAR SYSTEM

2.1. Dynamic of Helical Gear System
The mathematical model of a simple helical gear system,
which is composed of one gear pair of mating gears, two
shafts and four bearings, is developed by the assumption
of a lumped parameter system. This is assuming the
existence of mating helical gear teeth with elastic defor-
mation, that the bodies of gears are rigid rotors with
gyroscopic effect, the bearings to be a linear spring, and
the shaft to be an Euler beam with the elastic and inertia
effect.

The equations of motion for helical gear system can be
written in matrix from as

(MU wi+[GI{wl+[K{w}={0} (D

where the generalized displacement vector {w} consists
of the three displacement vectors, x, y, z with the
corresponding lateral 6, 8, and torsional &, rotational
vectors as

X

{wi= @

o,

The equation of motion shown in equation (1) includes
the effects of inertia, [M], gyroscopic forces [G], stiffness,
(K].

2.2. Vibration Model of a Helical Gear Pair
The process of the vibration model of a teeth-contact
region is as follows:

(1) Calculated the equivalent mesh stiffness considering
the elastic deformation of mating gear teeth.

(2) Neglected the friction force in the distributed trans-
mitted force spread over face width of mating gear
teeth which can be defined by the average concen-
trated force at pitch point and average Couple Force.

(3) Neglecting Couple Force, considering lead crowning
of gear tooth surface can define the transmitted force
of mating gear teeth as the average concentrated
force at pitch point as shown in Figure 1.

(4) Considered the elastic deformation of a gear tooth
only and not the body of a gear.

(5) As shown in Figure 2, assumed the mating gear teeth
as two separate compressed linear springs, P-G1 and
P-G2. Here, the direction of the springs is vertical to
the teeth contact line, AB.

(6) The equivalent spring coefficients, K1 and K2, can be
calculated with the assumption of equivalent spur

Ry

M,

/ line of action
7, C}‘

Figure 1. Vibration model of face contact of helical gear
tooth.

Gear 1 Gear 2

Figure 2. Model of helical gear pair.

gear transformation of a helical gear and Comell’s
method (1980) which regards a gear tooth as a
cantilever beam considering bending and shear
deformations and gear contact deformation derived
from Hertz’s contact theory.
The mathematical model of a helical gear pair is
shown in Figure 3. Let the center of drive gear be the
origin of coordinates, the radial horizontal direction be x-

Figure 3. Schematic of a mathematical model on a pair of
helical gear.
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axis, the radial vertical direction be y-axis and the
positive rotational direction be z-axis.

Put the nodes at the center of the helical gears. The
generalized displacement vector which is composed of
translational displacement vector, u and rotational
displacement vector € at both modes is defined as

¢ 3)

where

) ol

The generalized force vector at both nodes, f is
defined as

|E
Jf—[ MJ 4)

where

F. M,
£{F) el

F; M:
The direction vector of tooth contact force, I/ is defined
as

cos cos @
77,=( sinocos @ } 5)
~ \sing

where ¢ is the helix angle of base circle and the angle
between the center of drive and driven gear is 6. As the
rotational direction of the drive gear is counterclockwise
in Figure 3, the angle of line of action, ris expressed as

o= g— o+ 6 (6)
where ¢ is the transverse running pressure angle.

The potential energy of gear contact tooth is defined as

1

V,,;;K,,,Az )

where, K, is the equivalent tooth stiffness and A, is the
amount of compressed deformation.

A=ﬂrT(lilR_ L_tN) ®)

where, u_, uy are the displacement vector of the tooth
contact of drive and driven gear and can be described by
the generalized displacement u_, uy at the center of
gears.

u=D\4, ©)
L_{N=D2g2 (10)

where, D,, D, are the proportional matrix calculated
from linear correlation of rigid body motion between the
displacement of tooth contact and the center of gears.

100 0 L, -L,
Dl= 010 —Lzl 0 Lxl
001 L, -L, O
100 0 L, -Ly,
D={010-L, 0 L,
001 L, L, 0

The potential energy of a helical gear tooth is derived
by the equations of (7) with the equations of (8), (9), (10).

el
2\g Ky Ky 6_12

=2

where
Ku=K;:Din1 D,
K.=—K,Di1 1 D,
Ky=—K,;D31.17 D,
K»=K,D;n 1 D,

The element stiffness matrix between two nodes can
be calculated by equation (11), the equation of potential
energy, which is described with generalized displacement
vector at the center of both mating gears with the
assumptions of a lumped parameter system.

2.3. Exciting Source of a Helical Gear System

A helical gear system is excited by the exciting source
which is classified as mass unbalance, assembling errors
of bearings and shafts, tooth profile and lead errors of
gears, the clearance and non-linear deformation of rolling
bearings and periodic variation of gear tooth stiffness.
The exciting frequency of mass unbalance is the same as
the speed of rotation, @ The exciting frequency of a tooth

Number of Balls(N)

Pitch
Diameter(Pd)

N ]
’ I /!
S

Contact

_4 l*‘ £ Angle
Diameter(Bd)

Figure 4. Parameters for calculating bearing frequencies.
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Table 1. Self exciting vibration of gear system.

Self exciting frequencies Contents Equation Remark
The rotational velocity of input shaft The mass unbalance of gear on input 1X
)
() shaft
The rotational velocity of output shaft | The mass unbalance of gear on output
1.33X W,
(a») shaft
_ros[ _ Ba
FTF= 2 lil Pdcos jl 04X m
-
The self exciting frequencies of B2
bearing clearances (77) BS=2LI;d(’”PS)[1 - (}Tj) COSZ¢] 2.8X 7
OR=N(FTF) 72X 7
IR=N(rps—FTF) 9.8X 7,
Tooth passing frequency (€2) Self-exciting force caused by tooth errors 43X Q
. . 42X Q-
Side band frequencies composed of
tooth passing frequency and Self-exciting force caused by periodic 44X Q+ o
rotational velocity of shaft variation of tooth stiffness coefficient 427X Q-w,
kQ + lw kQ + ml'w)
(Kx fea k2 2 ml ) 443X Q+ar
The integer multiples of tooth pass- .
ing frequency (KQ k=2, 3, ..) Self-exciting force caused by tooth errors 36X 2Q
Side band frequencies composed of 71.6X 2Q:2n;
tooth passing frequency and bearing Self-exciting force caused by periodic 08.4X 20427
clearances and rotational velocity of variation of tooth stiffness coefficient _ ?
shaft 1124X | 3Q-3n+3w+@

profile and lead errors and pitch error of gears is the
integer multiples of tooth passing frequency, &, which is
defined as the multiple of the speed of rotation and the
number of gear teeth. The exciting frequency of bearings,
FTF (fundamental train frequency), BS (ball spin frequ-
ency), OR (outer race frequency), IR (inner race frequ-
ency) can be calculated by Work (1991).

Parameters for calculating bearing frequencies are
shown in Figure 4. The equations of the exciting
frequency of bearings are defined as

FTF:’:?[l —%‘icos ] (12)
B 2

Bs=2p—l;d(rps)[1 - (Ff’) coszﬂ )

OR=N(FTF) (14)

IR=N(rps - FTF) (15)

where

rps  : aspeed of rotation

B, : ball or roller diameter

P, . pitch diameter

o : contact angle

N : the number of ball or roller

As the gear tooth stiffness varies periodically accord-
ing to the tooth contact position, this self exciting force
generates exciting frequencies; i.e., side bands frequen-
cies X Q+ @ k=1, 2, 3 etc) which is described as the
composition of the integer multiples of the speed of
rotation, omega and tooth passing frequency, Q The
exciting frequencies caused by the various exciting
sources of a helical gear system are shown in Table 1.

2.4. Analysis Results of a Helical Gear System

The specifications of helical gears, shafts and bearings
are shown in Tables 2, 3, 4. The stiffness of bearings is
calculated by Rotor Bearing, Technology & Software
(1998). The coefficient of average tooth stiffness in
mating helical gears is calculated by Park’s (1987)
program and the result is 0.25 x 10° N/m.

A Campbell diagram to analyze the critical speeds
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Table 2. Helical gear specifications.

Description Gear (G #1) | Pinion (G #2)
Number of teeth 43 33
Module (mm) 2.0 2.0
Pressure angle (deg) 15 15
Helix angle (deg) 25 25
Tooth width (mm) 17 17
Center distance 86 86

I, (kgm?) 13023 x 107 | 5963 x 107

1, (kgm?) 27840 x 102 | 1.4605x 10

Mass (kg) 2.21896 1.8023

Table 3. Shaft specifications.

Number| |enEh | Dt |t |
S1 | 704 30 | 20x10" | 028
S2 69 30 2.0x 10" 0.28
S3 70.4 30 2.0 % 10" 0.28
S4 69 30 2.0 x 20" 0.28

Table 4. Bearing specifications.

Description B#l | B# | B# | B#

Roller number 17 17 17 17

Roller diameter (mm)| 6.771 | 6.771 | 6.771 | 6.771

Pitch diameter (mm) |38.4232|38.4232|38.4232|38.4232

Effective length of 9.8 9.8 9.8 9.8
roller (mm)

Contact angle (deg) | 28.42 | 2842 | 28.42 | 2842
K. (x10° N/m) 3.189 | 3.282 | 2.802 | 2.855
K., (x10° N/m) 3.189 | 3.282 | 2.802 | 2.855
K, (x10° N/m) 1.909 | 2.012 | 1.571 | 1.593
K (x10* N/m) 7.813 | 8.017 | 7.530 | 7.607
K (x10* N/m) 7.813 | 8.017 | 7.530 | 7.607
K (x10* N/m) 0 0 0 0

based on the exciting frequencies which are described in
Table 1, is shown in Figure 5. This diagram demonstrated
the change of the natural frequencies and the exciting
frequencies, 43X, 86X, 71.6X, 98.4X and 112.4X, in the
range of the input velocity of 1000-3200 rpm, and the
exciting frequency under 5000 Hz.

5000 112.4X 98.4X
4500 4591 %451 7804 36X
. 40007 716X
N -
L 3500
z 3100 2694
qc:J 3000 13573 P 7626
o
& 25004 e 3180
& o » 43X
= 2234150 M
T 20 e
g /
®© 1500
b4
1000 |
500 T T T T 1 1
1000 1200 1600 2000 2400 2800 3200

Reference run speed (rpm)

Figure 5. Campbell diagram.

Figure 6. Test rig of the helical gear system.

3. EXPERIMENTAL EVALUATION OF THE
MODEL OF A HELICAL GEAR SYSTEM

3.1. Experimental Setup
As shown in Figure 6, the test rig of a simple helical gear
system was composed of two helical gears, two shafts,
four taper roller bearings, one drive motor and one
flexible coupling. This flexible coupling was used to
avoid the external excitation caused by the drive motor.
To measure and analyze the vibration signal, Polytec
OFV-352 laser vibrometer, Polytec OFV-2601 controller
and SA 390 FFT were used. The schematic of experiment
system is shown in Figure 7.

3.2. Results and Discussions

For experiment, the drive motor was operated from 1000
to 3200 rpm. As a result of the experiment, the waterfall
diagram was shown in Figure 8. In Figure 8, the exciting
frequencies caused by the mass unbalance of input shaft
(1X), the mass unbalance of output shaft (1.33X) and the
rolling bearings (0.4X, 2.8X, 7.2X, 9.8X) hardly appear.
However the exciting frequencies caused by the tooth
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Table 5. Comparison for analysis and experiment results.

Critical speed (rpm) Difference
Analysis Experiment (%)
2738 2700 14
2827 2810 1.0
3117 3060 1.8
3180 - -
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Figure 8. Waterfall diagram.
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Figure 9. Bode Plot at Tooth-passing frequency (43X).

passing frequency (43X), double of tooth passing frequ-
ency (86X) and the periodic variation of tooth stiffness
coefficient (71.6X, 98.4X, 112.4X) appear apparently.
These exciting frequencies were described in Table 1.

In the case of the tooth passing frequency, 43X, the
best apparent exciting frequency, there are high ampli-
tude signals between 2500 rpm and 3200 rpm and the
Bode diagram of these is shown in Figure 9. We can
appreciate the experimental results of critical speeds of
this helical gear system are 2700, 2810 and 3060 rpm,
respectively.

The analytical and experimental results on the critical
speeds in the case of the tooth passing frequency, 43X,
are compared in Table 5. We can appreciate that the
possibility of error between the analysis and experiments
is within 2%.

4. CONCLUSIONS

The mathematical model of a simple helical gear system
is developed and verified by experiments to study on the
vibration characteristics of a helical gear system.

(1) The results show that the exciting frequencies caused
by the mass unbalance of input shaft, the mass
unbalance of output shaft and the rolling bearings
hardly appear. However the exciting frequencies
caused by the tooth passing frequency, double of the
tooth passing frequency and the periodic variation of
tooth stiffness coefficient appear apparently.

(2) From experimental results, we can find the critical
speeds of this simple helical gear system are 2700,
2810 and 3060 rpm. The results obtained from the
proposed methods are in good agreement with those
from the experiment results within 2%.

(3) We can appreciate the validity of a lumped parameter
method on the modeling of a helical gear system.

(4) We expect this program to contribute to the reduction
of the vibration/noise on vehicle transmissions in the
field of both design and manufacturing. As well, this
program can be used as a basic sub-program for
CAD/CAM'’s of low-noised gear teeth.
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