• Title/Summary/Keyword: Low Velocity

Search Result 2,843, Processing Time 0.112 seconds

Research on Friction Characteristics of Constant Velocity Joint Grease (등속조인트용 그리스 마찰특성 연구)

  • Lee, Sung Uk;Bae, Dae Yoon
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.223-227
    • /
    • 2013
  • A GAF (generated axial force) is produced at a plunging-type CVJ (constant velocity joint). A high GAF can cause vibrations in a vehicle. Grease is used to reduce friction between the roller and the track of the outer case of a CVJ. The grease performance depends on the surface conditions and operating temperature. The surface of the outer case is extremely rough and hard. In recent times, the maximum operating temperature of CVJs has crossed $140^{\circ}C$, because the exhaust line is now located close to the CVJ. In this study, we examined the friction characteristics of friction additives at $25-150^{\circ}C$ and determined an optimal formulation with a low friction coefficient. This formulation can be used to develop low-friction grease that can reduce the GAF produced at a CVJ by approximately 7-26%.

Precise Control of Ball-Screw Systems with Friction (마찰을 고려한 볼-스크류 시스템의 정밀 제어)

  • 김종식;한성익;공준희;신대왕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to identify the friction effect. The friction model which Canudas suggested so called, LuGre model is well expressed the friction effect as Streibeck in the law velocity. But it\`s model parameters were estimated continuously in operation for precise control. This paper suggests the sliding mode controller and observer for compensating the friction effect. Experimental results for a ball-screw system show that the proposed method has a good performance especially in the low velocity.

Density distributions and Power spectra of outflow-driven turbulence

  • Kim, Jongsoo;Moraghan, Anthony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2014
  • Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.

  • PDF

Trimerization of Isobutene over Solid Acid Catalysts under Wide Reaction Conditions

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Kim, Tae-Jin;Lee, Hee-Du;Jang, Nak-Han;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2075-2078
    • /
    • 2007
  • Oligomerization of isobutene has been investigated using a few solid acid catalysts in order to produce efficiently triisobutenes that are useful chemical feedstocks for heavy alkylates and neo-acids. Several reaction conditions such as space velocity and isobutene concentration are evaluated, and a few cation exchange resins with various acid capacities were compared in the reaction. High trimers selectivity and high conversion can be obtained over a catalyst containing high acid capacity at low space velocity and relatively low isobutene concentration. The stability of a catalyst for the reaction is high when the acid capacity of the catalyst is high (for example Amberlyst-35).

Evaluation of Strength of Normal and Lightweight Aggregate Concrete Using Ultrasonic Velocity Method in Early Age (초기 재령에서 초음파 속도법을 활용한 보통 및 경량 골재 콘크리트의 강도 발현 평가)

  • Nam, Young-Jin;Kim, Won-Chang;Choi, Hyeong-Gil;Ryu, Jung-Rim;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.55-56
    • /
    • 2023
  • Recently, large and high-rise buildings are increasing, and accordingly, concrete weight reduction is required. Lightweight aggregate concrete can provide economic feasibility and large space, but safety can be reduced due to problems such as low strength and poor durability. Since the development of such low strength of concrete is important in the early construction stage, it is necessary to evaluate the vertical formwork demolding period at the early age. The correlation was analyzed by measuring the compressive strength and ultrasonic pulse velocity. As a result, the ultrasonic pulse rates of normal and lightweight aggregate concrete at the time of 5 MPa expression, which is the time of vertical mold deformation, were 3.07 km/s and 2.77 km/s for W/B 41, and 2.89 km/s and 2.73 km/s for W/B 33.

  • PDF

Investigation of heating and accretion event of Milky Way disk

  • Lee, Ayeon;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2021
  • We present preliminary results on the chemical and kinematic analysis of accreted and heated metal-rich (-1.0 < [Fe/H] < -0.3) stars in the Galactic disk. These stars are in the ranges of e > 0.7, -100 < V𝜙 < 100 km/s, and |Z| < 3 kpc, and are presumably heated (accreted) by (from) past merger events such as Gaia Enceladus and Sausage (GSE). These stars are largely separated into two groups based on the level of [α/Fe] and radial velocity dispersion. The first group has low [α/Fe] and high radial velocity dispersion, and the second group shows high [α/Fe] and low radial velocity dispersion. We propose that the first group of stars are accreted from the GSE galaxy, whereas the second group of stars are dynamically heated by the GSE merger event.

  • PDF

Seasonal Variation of the Soya Warm Current Observed by HF Ocean Radars

  • Ebuchi Naoto;Fukamachi Yasushi;Ohshima Kay I;Shirasawa Kunio;Ishikawa Masao;Takatsuka Tom;Dailbo Takaharu;Wakatsuchi Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.184-187
    • /
    • 2004
  • Three HF ocean radar stations were installed at the Soya Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current. Frequency of the HF radar is 13.9 MHz, and range and azimuth resolutions are 3 km and 5 deg., respectively. Surface current velocity observed by the radars shows good agreement with drifting buoy and shipboard ADCP observations. The velocity of Soya Warm Current reaches its maximum, which is about 1 m/s, in summer, and becomes weak in winter. The surface transport across the strait shows a significant correlation with the sea level difference along the strait.

  • PDF

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Settling Velocity of Phytoplankton in the Nakdong-River (낙동강 수계의 식물플랑크톤 침강속도)

  • Jung, Yukyong;Kim, Bomchul;Shin, Myoungsun;Park, Ju-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.807-813
    • /
    • 2007
  • Settling velocity is one of major parameters determining algal biomass in water quality modeling. In this study, the settling velocity of phytoplankton was measured in reservoir and stream sites of the Nakdong River, Korea. Settling velocities of various phytoplankton species were determined by measuring algal cell biomass settled in a sedimentation cylinder. Mean settling velocities were $0.22m\;day^{-1}$ in reservoir sites and $0.33m\;day^{-1}$ in stream sites, which were relatively higher compared with other default values suggested by water quality models (e.g. $0.1m\;day^{-1}$ in CE-QUAL-W2). The lower settling velocity in reservoirs than in stream implies the adaptation of phytoplakton to low turbulence in lentic environments. Cyanobacteria showed lower settling velocity ($0.2m\;day^{-1}$) than diatoms ($0.3m\;day^{-1}$), and this phenomenon may have resulted from buoyancy mechanisms of cyanobacteria. Cell volume did not show a significant correlation with settling velocity in this study, implying that conformation factors of colonies or other factors had large effects on settling velocity of algal cells as well as cell size. The result of this study may suggest proper coefficients of settling velocity of phytoplankton in the calibration of water quality model.

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF