• Title/Summary/Keyword: Low Temperature Solar thermal

Search Result 181, Processing Time 0.024 seconds

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

An Experimental Study of a Water Type Glazed PV/Thermal Combined Collector Module (액체식 Glazed PVT 복합모듈의 성능실험 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal (PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously. In general, two types of PVT can be distinguished : glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type PVT combined module, glass-covered, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.6% average and its PV efficiency was about 10.0% average, both depending on solar radiation, inlet water temperature and ambient temperature.

An Experimental Study on the Thermal Performance by the Type of Thermal Insulation in Basement Structures (지하외벽체의 단열유형별 열성능에 관한 실험적 연구)

  • Lee, J.Y.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • This is study of the planning of thermal insulation to prevent heat loss in a basement, is aimed at investigating the heat loss from the basement space and basement structures. The results analyzed in these researches are as follows; To analyze the heat loss from basement structures, this study experimented on the heat flow phenomenon of a non-insulation structure and two insulation structure models. From the result, the interior surface temperature of two insulation structures(B, C, model) showed an equal temperature, but the interior surface temperature of a non-insulation structure (A model) is different from the two models, Therefore, we understand that the insulator constructed in the basement structure makes a role of preventing the heat loss from the basement. In addition, the exterior surface temperature of two insulation structure models showed an equal temperature. Specially, judging from the temperature difference of C model. we understand that the performance of insulator is low under the definite depth of underground. The thermal insulation design should be constructed under the definite depth of underground considering outdoor and building conditions.

Development of Solar Technology in Korea (태양열 이용기술 개발 현황)

  • Kang, Yong-Heack;Yang, Yoon-Sub
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.1-17
    • /
    • 1998
  • In order to analyze the status of development of solar thermal technology in Korea, importance and characteristics of solar thermal technology is considered. That is, solar collector, solar hot water heater, solar industrial system and solar buildings is analyzed in the view of worldwide technology, And then, domestic insolation sources and sale amounts of solar system is introduced. In this paper, it Is presented long-term objective in the basic plan of development new & rowable energy in Korea. As a result of analysis, the status of solar thermal technology in Korea is pactical use state in the field of low temperature use and application state in the field of mid-temperature use.

  • PDF

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Demonstration study on Desalination System using Solar energy (태양에너지 해수담수화시스템 실증)

  • Kim, Jeong-Bae;Joo, Hong-Jin;Yoon, Eung-Sang;Joo, Moon-Chang;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.27-33
    • /
    • 2007
  • In this research, to develop the practical application system of fresh water generation system with plate-type fresh water generator using low pressure evaporation method is the main object, and to do that, this study used the evacuated solar collector with operating range of about $50-85^{\circ}C$ as thermal energy source and solar photovoltaic as electric energy source. To achieve that object, this study set up the demo-plant, then estimated and analyzed the usefulness, the safety, and the reliability through pre-tests during short time ahead of the long-time operation. This study showed that the pumps, which are including sea water supply, ejector, hot water supply, and fresh water pumps, were operated one after another. And, the fresh water yield was closely related with the solar irradiance and lower supply temperature of hot water was revealed more reasonable for the solar energy desalination system. That is due to the insufficient area than the solar collector area being required that was estimated through the performance tests of the fresh water generator.

Development of a Solar Collector Performance of Cylindrical Parabolic Concentrating Solar Collector (태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) -)

  • Song, Hyun Kap;Yon, Kwang Seok;Cho, Sung Chan
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.54-68
    • /
    • 1985
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{\circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{\circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{\circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{\circ}-6^{\circ}C$ at the flow rate of $110-130{\ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${\eta}_{max}=58%$ with longitudinal installation and ${\eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{\ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{\ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.

  • PDF

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

Property Analysis of Solar Selective Coatings (태양 선택흡수막의 특성 분석)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.31-38
    • /
    • 2013
  • The chemical composition of the black Cr solar selective coatings electrodeposited were investigated for property analysis by using a XPS(X-ray photoelectron spectroscopy) before and after annealing in air at $300^{\circ}C{\sim}500^{\circ}C$ for 120 hours. Black Cr selective coating exposed by solar radiation for 5 months was compared with annealed sample. In addition, The Cu solar selective coatings were prepared by thermal oxidation method for low temperature application. The samples obtained were characterized by using the optical reflectance measurements by using a spectrometer. Optical properties of oxidized Cu solar coatings were solar absorptance $({\alpha}){\simeq}0.62$ and thermal emittance $({\epsilon}){\simeq}0.41(100^{\circ}C)$. In the as-prepared Cr black selective coating, the surface of the coating was found to have Cr hydroxide and Cr. The Cr hydroxide of the major component was converted to $Cr_2O_3$ or $CrO_3$ form after annealing at $500^{\circ}C$ with the desorption of water molecules. The black Cr selective coating was degraded significantly at temperature of $500^{\circ}C$. The main optical degradation modes of this coating were diffusion of Cu substrate materials.