• Title/Summary/Keyword: Low Temperature Performance

Search Result 2,077, Processing Time 0.033 seconds

Study on Pressure-dependent Growth Rate of Catalyst-free and Mask-free Heteroepitaxial GaN Nano- and Micro-rods on Si (111) Substrates with the Various V/III Molar Ratios Grown by MOVPE

  • Ko, Suk-Min;Kim, Je-Hyung;Ko, Young-Ho;Chang, Yun-Hee;Kim, Yong-Hyun;Yoon, Jong-Moon;Lee, Jeong-Yong;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.180-180
    • /
    • 2012
  • Heteroepitaxial GaN nano- and micro-rods (NMRs) are one of the most promising structures for high performance optoelectronic devices such as light emitting diodes, lasers, solar cells integrated with Si-based electric circuits due to their low dislocation density and high surface to volume ratio. However, heteroepitaxial GaN NMRs growth using a metal-organic vapor phase epitaxy (MOVPE) machine is not easy due to their long surface diffusion length at high growth temperature of MOVPE above $1000^{\circ}C$. Recently some research groups reported the fabrication of the heteroepitaxial GaN NMRs by using MOVPE with vapor-liquid-solid (VLS) technique assisted by metal catalyst. However, in the case of the VLS technique, metal catalysts may act as impurities, and the GaN NMRs produced in this mathod have poor directionallity. We have successfully grown the vertically well aligned GaN NMRs on Si (111) substrate by means of self-catalystic growth methods with pulsed-flow injection of precursors. To grow the GaN NMRs with high aspect ratio, we veried the growth conditions such as the growth temperature, reactor pressure, and V/III molar ratio. We confirmed that the surface morphology of GaN was strongly influenced by the surface diffusion of Ga and N adatoms related to the surrounding environment during growth, and we carried out theoretical studies about the relation between the reactor pressure and the growth rate of GaN NMRs. From these results, we successfully explained the growth mechanism of catalyst-free and mask-free heteroepitaxial GaN NMRs on Si (111) substrates. Detailed experimental results will be discussed.

  • PDF

A Design of Power Management IC for CCD Image Sensor (CCD 이미지 센서용 Power Management IC 설계)

  • Koo, Yong-Seo;Lee, Kang-Yoon;Ha, Jae-Hwan;Yang, Yil-Suk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.63-68
    • /
    • 2009
  • The power management integrated circuit(PMIC) for CCD image sensor is presented in this study. A CCD image sensor is very sensitive against temperature. The temperature, that is heat, is generally generated by the PMIC with low efficiency. Since the generated heat influences performance of CCD image sensor, it should be minimized by using a PMIC which has a high efficiency. In order to develop the PMIC with high efficiency, the input stage is designed with synchronous type step down DC-DC converter. The operating range of the converter is from 5V to 15V and the converter is controlled using PWM method. The PWM control circuit consists of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit. The saw-tooth generator is designed with 1.2MHz oscillation frequency. The comparator is designed with the two stages OP Amp. And the error amplifier has 40dB DC gain and $77^{\circ}$ phase margin. The output of the step down converter is connected to input stage of the charge pump. The output of the charge pump is connected to input of the LDO which is the output stage of the PMIC. Finally, the PMIC, based on the PWM control circuit and the charge pump and the LDO, has output voltage of 15V, -7.5V, 3.3V and 5V. The PMIC is designed with a 0.35um process.

  • PDF

Performance of Rice Varieties at the Different Levels and Time of Nitrogen Application (질소시비량 및 분시비율이 수도품종의 생육과 수량에 미치는 영향)

  • 박종석;이석순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.222-228
    • /
    • 1988
  • This experiment was carried out to investigate the effects of N levels (0,10,20,30kg/10a) and N split rates [the rates of basal+top dressing 15 days after transplanting (DAT) : top dressing 25 days before heading (DBH) was 100 : 0, 80 : 20, 60 : 40 ] on the growth, yield, yield components, and N uptake of Seomjinbyeo (J) and Samgangbyeo (I${\times}$J). The maximum tillering stage occurred in the middle of July in both varieties, but Samgangbyeo showed the second maximum tillering stage in the middle of August probably due to the retarded early growth caused by low temperature in the tillering stage and to favoring temperature in August. Grain yield of Seomjinbyeo was similar among the N levels from 10 to 30 kg/10a without occurrence of rice blast and lodging, but that of Samgangbyeo increased as N level increased upto 30 kg/10a. Grain yield of Seomjinbyeo was higher when N was applied three times (basal and two top dressings 15 DAT and 25 DBH) compared with two times (basal and top dressing 15 DAT), but that of Samgangbyeo was not different among the N split rates. Total N uptake and the proportion of fertilizer N to the total N uptake increased as N level was higher. N uptake tended to be higher as proportion of basal+top dressing 15 DAT increased in early growth stage, but it was higher as proportion of N applied 25 DBH increased in the late growth stage. The N efficiency to produce grain per absorbed N unit decreased as N level decreased in Seomjinbyeo, but similar in Samgangbyeo.

  • PDF

Environmental Efficiency Analysis of an Enclosed Experimental Broiler House (실험 무창육계사의 환경효율 분석)

  • Hwangbo, J.;Song, J.I.;Cho, S.B.;Chung, K.H.;Lee, B.S.;Nam, B.S.;Chung, C.S.;Chung, I.B.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.475-482
    • /
    • 2002
  • The experiment was conducted to evaluate a ventilation system, which was devised to encourage farmers to use the enclosed poultry housing system. The study was observed in the National Livestock Research Institute from May 9 to May 30 in 2002. The main results of the experiment are as follows: 1. Although the outside temperature of the enclosed poultry house was 9.6 ${\sim}$ 21.2$^{\circ}C$ with 11.6$^{\circ}C$ variation, the house with an excellent heat insulation was maintained at 32${\sim}$33$^{\circ}C$ in a variation of 2$^{\circ}C$ which is within the range of the optimal temperature for broiler, being aided with two small electric heaters. 2. The average of air flow rates of the upper, middle and low parts of the room in the broiler house were detected at 0.57, 0.22 and 0.04 m/sec, respectively. The air flow in the whole room was distibuted uniformly by a perforated duct. In conclusion, heat and humidity could be controlled without any problem in this enclosed housing system. Especially, air flow in all parts of the room was detected in uniform rates, resulting in the better ventilation performance with air inhalation through the duct and air exhaust through the side walls of the house.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성)

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.133-141
    • /
    • 2001
  • The friction and wear properties of carbon-carbon composites made with different weight percent of $MoSi_2$ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(${\mu}$=0.15~0.2) during normal wear regime to the high-friction behavior(${\mu}$=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180${\circ}C$. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without $MoSi_2$. Especially, the composites containing 4wt% $MoSi_2$ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without $MoSi_2$.

  • PDF

Amorphous Indium-Tin-Zinc-Oxide (ITZO) Thin Film Transistors

  • Jo, Gwang-Min;Lee, Gi-Chang;Seong, Sang-Yun;Kim, Se-Yun;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.170-170
    • /
    • 2010
  • Thin-film transistors (TFT) have become the key components of electronic and optoelectronic devices. Most conventional thin-film field-effect transistors in display applications use an amorphous or polycrystal Si:H layer as the channel. This silicon layers are opaque in the visible range and severely restrict the amount of light detected by the observer due to its bandgap energy smaller than the visible light. Therefore, Si:H TFT devices reduce the efficiency of light transmittance and brightness. One method to increase the efficiency is to use the transparent oxides for the channel, electrode, and gate insulator. The development of transparent oxides for the components of thin-film field-effect transistors and the room-temperature fabrication with low voltage operations of the devices can offer the flexibility in designing the devices and contribute to the progress of next generation display technologies based on transparent displays and flexible displays. In this thesis, I report on the dc performance of transparent thin-film transistors using amorphous indium tin zinc oxides for an active layer. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium tin zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium tin zinc oxides was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 4.17V and an on/off ration of ${\sim}10^9$ operated as an n-type enhancement mode with saturation mobility with $15.8\;cm^2/Vs$. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium tin zinc oxides for an active layer were reported. The devices were fabricated at room temperature by RF magnetron sputtering. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Physical and Mechanical Properties of Heat-treated Domestic Yellow Poplar (백합나무 열처리재의 물리 및 역학적 특성)

  • Kim, Kwang-Mo;Park, Jung-Hwan;Park, Byoung-Soo;Son, Dong-Won;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • Recently, yellow poplar (Liriodendron tulipifera L.) is getting attention in Korea due to the fast growing and high yield and quality of lumber. But, it is thought that the color difference between heartwood and sapwood may restrict the practical use of it. This study was aimed to enhance the value of yellow poplar lumber by the color control using high temperature heat-treatment, which had been tried for domestic cedar (Kim et al., 2009). The material properties including surface color of yellow poplar lumber were evaluated according to heat treatment conditions. The difference of color between sapwood and heartwood could be reduced by heat treatment at a temperature about $200^{\circ}C$. Long heating time was more effective in reducing the difference. The Equilibrium Moisture Content (EMC) of heat-treated wood was as low as 50 percent of the control. The result obviously indicates that heat-treated wood is more dimensionally stable in the change of moisture condition. The durability against wood rotting fungi also increased by the heat-treated, but it was not so effective as the case of cedar. The changes of mechanical properties of heat-treated yellow poplar were very similar to that of heat-treated cedar. In order to develop new use of heat-treated yellow poplar, the changes of mechanical properties should be considered. There were no significant changes in microscopic structure which may cause changes in mechanical properties. Further study of heat-treated wood is needed to scrutinize the causes of changes of material properties.

Effect of Non-ionic Additive on Morphology and Gas Permeation Properties of Polysulfone Hollow Fiber Membrane (비이온계 첨가제에 의한 폴리술폰계 중공사 막의 모폴로지 조절과 기체투과 특성)

  • Lee, Hye Jin;Koh, Mi Jin;Kim, Duek Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.224-233
    • /
    • 2012
  • To improve permeation performance of gas separation membrane, polysulfone hollow fiber membrane was prepared by wet-dry phase inversion method using Triton X-100 as non-ionic additive. And variation of gas permeation behavior by additive was investigated. Various spinning conditions such as air gap, concentration of polymer, dope tank temperature were controlled and these effects were studied. The morphology and gas permeation property of hollow fiber membranes were investigated using scanning electron microscope (SEM) and bubble flow meter respectively. We confirmed that the membranes added with Triton X-100 had a smooth external skin at various air gap length conditions. The macrovoids of these hollow fiber membranes were more developed with increase of air-gap from 4 to 90 cm and that induced higher permeance. The permeance of polysulfone membranes has the higher value at comparatively lower concentration polymer (30 wt% polysulfone) and lower concentration of additive (15 wt% Triton X-100). When temperature in dope tank was controlled, the membranes prepared at $100^{\circ}C$ showed low permeance because of volatilization of additive and solvent.