• Title/Summary/Keyword: Low Surface Tension

Search Result 201, Processing Time 0.027 seconds

Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System (커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성)

  • Park, Su-Han;Suh, Hyun-Kyu;Kim, Hyung-Jun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.

DELAYED HYDRIDE CRACKING IN ZIRCALOY FUEL CLADDING - AN IAEA COORDINATED RESEARCH PROGRAMME

  • Coleman, C.;Grigoriev, V.;Inozemtsev, V.;Markelov, V.;Roth, M.;Makarevicius, V.;Kim, Y.S.;Ali, Kanwar Liagat;Chakravartty, J.K.;Mizrahi, R.;Lalgudi, R.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.171-178
    • /
    • 2009
  • The rate of delayed hydride cracking (DHC), V, has been measured in cold-worked and stress-relieved Zircaloy-4 fuel cladding using the Pin-Loading Tension technique. At $250^{\circ}C$ the mean value of V from 69 specimens was $3.3({\pm}0.8)x10^{-8}$ m/s while the temperature dependence up to $275^{\circ}C$ was described by Aexp(-Q/RT), where Q is 48.3 kJ/mol. No cracking or cracking at very low rates was observed at higher temperatures. The fracture surface consisted of flat fracture with no striations. The results are compared with previous results on fuel cladding and pressure tubes.

Clinical Nurses' Experience of Emotional Labor (임상간호사의 감정노동 경험)

  • Yom, Young-Hee;Lee, Hyunsook Zin;Son, Heesook
    • Journal of Korean Clinical Nursing Research
    • /
    • v.22 no.3
    • /
    • pp.314-326
    • /
    • 2016
  • Purpose: The purpose of this study was to understand the experience of emotional labor of clinical nurses in medical institutes. Methods: A total of 26 nurses from 11 hospitals participated in the study. Six focus groups were organized and 4 to 5 nurses took part in each group. The compositional factors of groups included clinical experience, age, gender, work place and position. Data collection was conducted through focus group interview and it was proceeded by the time of data saturation. In this qualitative study, content analysis was conducted. Results: Five themes, 14 categories, and 33 subcategories, were emerged. The themes were 'Restrain themselves', 'Communion to the patients', 'Working environment provoking emotional tension', 'Respond to emotional events', 'Recovery of emotional energy'. Conclusion: Results indicated that surface acting of emotional labor such as, repression of personal desire and presenting the emotions that the organization ask nurse to express was related to psychosomatic symptoms, depression, burnout, poor job performance, increased mistakes, and low job satisfaction which eventually leads to nurses' turnover. In order to reduce negative influence of emotional labor, it is necessary to build positive organizational culture, to provide support from managers and co-workers. It is also important to improve work environment in order to do more deep acting since sharing emotions with patients can reduce the negative influence of emotional labor.

Measurements of Flow Meniscus Movement in a Micro Capillary Tube (마이크로 원형 모세관에서 계면 이동 현상의 측정)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Selective Plugging Strategy Based Microbial Enhanced Oil Recovery Using Bacillus licheniformis TT33

  • Suthar, Harish;Hingurao, Krushi;Desai, Anjana;Nerurkar, Anuradha
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1230-1237
    • /
    • 2009
  • The selective plugging strategy of Microbial Enhanced Oil Recovery (MEOR) involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is $120\;mPa{\cdot}s$ at $28^{\circ}C$. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave $27.7{\pm}3.5%$ oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and Amplified Ribosomal DNA Restriction Analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33.

The Effect of Heat Transfer from the Bubble Growing on the $B\dot{e}nard$ Convection Flow in a Square Cavity ($B\dot{e}nard$ 대류가 형성된 사각공동내의 상단 평판에서 기포의 성장이 열전달에 미치는 영향)

  • Eom, Yong-Kyoon;Kwon, Seung-Hye;Kwon, Gi-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.211-216
    • /
    • 2001
  • Flow motion and variation of thermal field around a bubble which attached at the upper cooled solid wall in a $B\dot{e}nard$ convection flow is studied experimentally using thermo-sensitive liquid-crystal tracers and image processing for flow visualization and analysis. The air is injected gradually by $0.1m\ell$ to make the bubble. As the growing of the bubble in a $B\dot{e}nard$ convection flow, the variation of temperature field and surface tension along the bubble, which in turn cause to change the thermal field patterns and the flow direction and patterns. 6 cells flow pattern is transformed into diverse flow pattern. At the large size of a bubble, it's only conduction mechanism under the region of the bubble because of low Ra number 1137, but the convection flow both sides of the bubble leads to another convection flow in the bubble influence area which has been remained stable stagnation.

  • PDF

Investigation for the Fluid Motion in Closed End Capillaries (닫힌 모세관에서 유체 이송에 관한 연구)

  • Lim, Hosub;Lim, Seong Jin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • Although many studies have been done on an open-end capillary, the invasion into a closed end capillary is still novel in its investigation. In this research we have explored the fluid invasion in closed-end capillaries where the shape of the meniscus and the height of invasion were accompanied by gas compression inside the capillary. Theoretically, the one dimensional momentum balance equation shows the fluid oscillation. In the experiments, we have found the different phenomena, either the fluid oscillation with low frequency or no oscillation. This discrepancy is mostly caused by two factors. First, a continuous decrease of the advancing contact angle due to decreasing invasion velocity as increasing pressure inside the closed-end capillary reduces the invasion velocities. Second, the high shear stress within the entrance length region was generated by the plug like velocity profile.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • Hong, Ung-Gi;Jang, Seong-Jin;Park, Jong-Bae;Bae, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

The Reliability of Optical Fiber Assembly Using Glass Solder

  • Lee, Jong-Jing;Kang, Hyun-Seo;Koh, Jai-Sang
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.147-151
    • /
    • 2004
  • In this study, an optical fiber assembly directly coupled with a laser diode or a photo diode is designed to confirm high reliable optical coupling efficiency of optical transmitter(Tx) and receiver(Rx). The optical fiber assembly is fabricated by soldering an optical fiber and a Kovar ferrule using a glass solder after inserting an optical fiber through a Kovar ferrule. The Kovar which has good welding characteristics is applied to introduce laser welding technique. The glass solder has excellent thermal characteristics such as thermal shift delamination compared with PbSn, AuSn solder previously used usually. Furthermore, the glass solder doesn't need fiber metalization and this enables low cost fabrication. However, the glass soldering is high temperature process over 35$0^{\circ}C$ and the convex shape after solidification due to surface tension causes the stress concentration on optical fiber. The stress concentration on the optical fiber increases the optical insertion loss and possibility of crack formation. The shape of glass solder was designed referring to 2-D Axi-symmetric FEM simulation. To test the mechanical reliability, mechanical vibration test and shock test were done according to Telcorida GR-468-Core protocol. After each test, the optical loss of the stress distributed fiber assembly didn't exceed 0.5 dB, which passes the test.

  • PDF