• 제목/요약/키워드: Low Sintering Temperature

검색결과 762건 처리시간 0.027초

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

소결온도에 따른 PMN-PNN-PZT 미세구조 및 압전특성 (Microstructure and Piezoelectric Properties of PMN-PNN-PZT with the Sintering Temperature)

  • 이현석;류주현;윤현상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.217-218
    • /
    • 2006
  • In this study, In order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured with the sintering temperature, and their microstructure and piezoelectric properties were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilone}_r$), electromechanical coupling factor($k_p$), piezoelectric constant($d_{33}$) and mechanical quality factor(Qm) showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

  • PDF

Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics

  • Nahm, Choon-W.
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.84-90
    • /
    • 2019
  • The varistor properties and stability against dc-accelerated stress of $V_2O_5-Mn_3O_4-Co_3O_4-Dy_2O_3-Nb_2O_5-Bi_2O_3$ (VMCDNB)-doped zinc oxide ceramics sintered at $850-925^{\circ}C$ were investigated. Increasing the sintering temperature increased the average grain size from 4.6 to 8.7 mm and decreased the density of the sintered pellet density from 5.54 to $5.42g/cm^3$. The breakdown field decreased from 5919 to 1465 V/cm because of the increase in the average grain size. Zinc oxide ceramics sintered at $875^{\circ}C$ showed the highest nonlinear coefficient (43.6) and the highest potential barrier height (0.96 eV). Zinc oxide ceramics sintered at $850^{\circ}C$ showed the highest stability: the variation rate of the breakdown field was -2.0% and the variation rate of the nonlinear coefficient was -23.3%, after application of the specified stress (applied voltage/temperature/time).

소결 조제를 이용한 고체산화물 연료전지용 세리아 전해질의 저온소결 특성 연구 (A Study of Ceria on Low-temperature Sintering Using Sintering Aids for Solid Oxide Fuel Cells)

  • 오창훈;송광호;한종희;윤성필
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.280-288
    • /
    • 2014
  • SDC (Samarium doped Ceria) electrolyte was developed for Intermediate temperature SOFC ($500^{\circ}C-800^{\circ}C$) which showed a good electrical conductivity. In this study, we used sintering aids to reduce the SDC sintering temperature down to $1000^{\circ}C$, especially which can help the SOFC scale-up. In order to reduce the SDC sintering temperature, $Li_2CO_3$ and $TiO_2$ were used as a sinering aids for decreasing sintering temperature. $Li_2CO_3$ and $TiO_2$ doped SDC sintered at $1000^{\circ}C$ showed 99% of the theoretical density and higher electrical conductivity than the pure SDC sintered at $1500^{\circ}C$. When measuring the OCV (Open circuit voltage) with the $Li_2CO_3$ and $TiO_2$ doped SDC electrolyte, however, the OCV values were lower than the theoretical OCV values which means that the modified SDC still had electronic conductivity.

20mol% Gd-doped 소결체 CeO$_2$ 전해질의 전기적 특성분석 (Characterization for Electrical Properties of Sintered 20mol% Gd-doped CeO$_2$ Electrolyte)

  • 김선재;국일현
    • 한국세라믹학회지
    • /
    • 제35권1호
    • /
    • pp.97-105
    • /
    • 1998
  • 20mol% Gd-doped CeO2 ultrafine powders as a promising electrolyte for the low temperature solid ox-ide fuel cells were synthesized with particle sizes of 15-20 nm using glycine nitrate process(GNP) fol-lowed by sintering their pellets at 150$0^{\circ}C$ for various times in air and then the electrical properties of the sintered pellets were investigated. The sintering behaviors and electrical properties for the sintered 20 sintered mol% Gd-doped CeO2 pellets were analyzed using dilatometer and SEM and AC two-terminal impedance technique respectively. As the heating temperature increased the synthesized powder had the sintering behaviors to show the start of the significant shrink at temperature of about $700^{\circ}C$ and to show the end of the shrink at the temperature of about 147$0^{\circ}C$. When the pellets were sintered with the vaious times at 150$0^{\circ}C$ the temperatuer which the shrink had been already completed the grain sizes in the sintered 20 mol% Gd-doped GeO2 pellets increased with the increase of the sintering time but their electrical resis-tivities showed the minimum value at the sintering time of 10h. It is due that the pellet sintered for 10h had the minimum activation energy fior the electtrical conduction. Thus it is thought that the decrease of the activation energy with the increase of the sintering time to 10h is induced by the enhanced mi-crostructure like the decrease of pore amount and the grain growth and its increase with the sintering times more than 10h is induced by the increase of the amounts of the impurities such as Mg. Al and Si from the sintering atmosphere.

  • PDF

Bendable Photoelectrodes by Blending of Polymers with $TiO_2$ For Low Temperature Dye-sensitized Solar Cells

  • 유기천;리위롱;이도권;김경곤;고민재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.319-319
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) based on plastic substrates have attracted much attention mainly due to extensive applications such as ubiquitous powers, as well as the practical reasons such as light weight, flexibility and roll-to-roll process. However, conventional high temperature fabrication technology for glass based DSSCs, cannot be applied to flexible devices because polymer substrates cannot withstand the heat more than $150^{\circ}C$. Therefore, low temperature fabrication process, without using a polymer binder or thermal sintering, was required to fabricate necked $TiO_2$. In this presentation, we proposed polymer-inorganic composite photoelectrode, which can be fabricated at low temperature. The concept of composite electrode takes an advantage of utilizing elastic properties of polymers, such as good impact strength. As an elastic material, poly(methyl methacrylate) (PMMA) is selected because of its optical transparency and good adhesive properties. In this work, a polymer-inorganic composite electrode was constructed on FTO/glass substrate under low temperature sintering condition, from the mixture of PMMA and $TiO_2$ colloidal solution. The effect of PMMA composition on the photovoltaic property was investigated. Then, the enhanced mechanical stability of this composite electrode on ITO/PEN substrate was also demonstrated from bending test.

  • PDF

Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결 (Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride)

  • 배강;우상국;한인섭;서두원
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

공침법에 의한 PZT-Ceramics의 제조 (Preparation of PZT-Ceramics by Coprecipitation Method)

  • 안영필;최석홍;이병우
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.168-172
    • /
    • 1988
  • In order to prevent the PbO vaporization during calcination and to produce the powder of good sinterability, a coprecipitation method for preparing homogeneous Lead-Zirconate-Titanate (PZT) powder from aqueous salt solution is described. In this method, the PZT-ceramics show low calcining and sintering temperature, and they have good sintering and electronic properties.

  • PDF

NiZn 페라이트의 저온 소결 특성에 관한 연구 (A Study on Properties of Low Temperature Sintering in the NiZn Ferrite System)

  • 고상기;김병호;김경용
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1074-1082
    • /
    • 1997
  • Microstructure and permeability as a function of sintering temperature and composition were studied on the Ni$\delta$Cu0.4-$\delta$Zn0.6Fe2O4 ($\delta$=0, 0.1, 0.2, 0.3, 0.4) which was prepared by Cu2+ substitution for Ni2+ in Ni.0.4Zn0.6Fe2O4, then followed by 8 wt% CuO and 1wt% Bi2O3 as sintering aids. It was found that NiCuZn ferrite in which Cu2+ is substituted for Ni2+ is more effective in reduction of sintering temperature than Ni.0.4Zn0.6Fe2O4, containing CuO as a sintering aid. The specimen $\delta$=0.2 sintered at 90$0^{\circ}C$ for 2hr exhibited the highest initial permeability value ($\mu$o=280 at 1Mhz), but the real permeability decreased at the frequency under 10 MHz. EPMA analysis showed that Ni$\delta$Cu0.4-$\delta$Zn0.6Fe2O4 ($\delta$=0.4), sintered at 95$0^{\circ}C$ for 2hrs consisted of three phase regions of Ni.0.3Cu0.1Zn0.6Fe2O4 region, Cu and Bi liquid existed at the 3-point boundary, although the stabilization energy of Ni2+ is higher than that of Cu2+ in B site.

  • PDF